|
|
--- |
|
|
license: cc-by-nc-sa-4.0 |
|
|
library_name: transformers |
|
|
pipeline_tag: image-classification |
|
|
--- |
|
|
|
|
|
# SPTNet: An Efficient Alternative Framework for Generalized Category Discovery with Spatial Prompt Tuning (ICLR 2024) |
|
|
|
|
|
This repository contains the model described in https://arxiv.org/abs/2403.13684. |
|
|
|
|
|
Code: https://github.com/Visual-AI/SPTNet |
|
|
|
|
|
<p align="center"> |
|
|
<a href="https://arxiv.org/abs/2403.13684"><img src="https://img.shields.io/badge/arXiv-2403.13684-b31b1b"></a> <a href="https://visual-ai.github.io/sptnet/"><img src="https://img.shields.io/badge/Project-Website-blue"></a><a href="#jump"><img src="https://img.shields.io/badge/Citation-8A2BE2"></a> |
|
|
</p> |
|
|
<p align="center"> |
|
|
SPTNet: An Efficient Alternative Framework for Generalized Category Discovery with Spatial Prompt Tuning <br> |
|
|
By |
|
|
<a href="https://whj363636.github.io/">Hongjun Wang</a>, |
|
|
<a href="https://sgvaze.github.io/">Sagar Vaze</a>, and |
|
|
<a href="https://www.kaihan.org/">Kai Han</a>. |
|
|
</p> |
|
|
|
|
|
|
|
|
[05.2024] We update the results of SPTNet with DINOv2 on CUB, please check our latest version in [Arxiv](https://arxiv.org/abs/2403.13684) |
|
|
|
|
|
| | All | Old | New | |
|
|
|---------------|------|------|------| |
|
|
| CUB (DINO) | 65.8 | 68.8 | 65.1 | |
|
|
| CUB (DINOv2) | 76.3 | 79.5 | 74.6 | |
|
|
|
|
|
|
|
|
|
|
|
## Results |
|
|
Generic results: |
|
|
| | All | Old | New | |
|
|
|--------------|------|------|------| |
|
|
| CIFAR-10 | 97.3 | 95.0 | 98.6 | |
|
|
| CIFAR-100 | 81.3 | 84.3 | 75.6 | |
|
|
| ImageNet-100 | 85.4 | 93.2 | 81.4 | |
|
|
|
|
|
Fine-grained results: |
|
|
| | All | Old | New | |
|
|
|---------------|------|------|------| |
|
|
| CUB | 65.8 | 68.8 | 65.1 | |
|
|
| Stanford Cars | 59.0 | 79.2 | 49.3 | |
|
|
| FGVC-Aircraft | 59.3 | 61.8 | 58.1 | |
|
|
| Herbarium19 | 43.4 | 58.7 | 35.2 | |
|
|
|
|
|
|
|
|
|
|
|
## Citing this work |
|
|
<span id="jump"></span> |
|
|
If you find this repo useful for your research, please consider citing our paper: |
|
|
|
|
|
``` |
|
|
@inproceedings{wang2024sptnet, |
|
|
author = {Wang, Hongjun and Vaze, Sagar and Han, Kai}, |
|
|
title = {SPTNet: An Efficient Alternative Framework for Generalized Category Discovery with Spatial Prompt Tuning}, |
|
|
booktitle = {International Conference on Learning Representations (ICLR)}, |
|
|
year = {2024} |
|
|
} |
|
|
``` |