iNosh AI - Kitchen Assistant
Intelligent Kitchen Assistant for Australian & New Zealand Users
iNosh AI is a fine-tuned Llama 3.2 1B model specialized for kitchen management, meal planning, and nutrition tracking.
Model Details
- Base Model: unsloth/Llama-3.2-1B-Instruct
- Fine-tuning: LoRA adapters (22MB)
- Training Data: 29,000 samples across 9 feature categories
- Training Loss: 0.176 (excellent)
- Target Market: Australia & New Zealand
Features
π Pantry Management
- Add/edit/delete pantry items
- Expiry tracking & alerts
- Low stock detection
- Barcode scanning (AU/NZ brands)
π Shopping Lists
- Store-specific lists (Woolworths, Coles, Countdown, IGA, Pak'nSave)
- Budget tracking
- Price estimation (AUD/NZD)
- Aisle organization
π³ Recipe Suggestions (15 Cuisines)
- Australian, New Zealand (MΔori), Chinese, Indian, Italian, Greek, Thai, Vietnamese, Japanese, Korean, Lebanese, Mexican, French, Spanish, Indonesian
- Dietary restrictions (halal, kosher, vegan, gluten-free, etc.)
- Nutrition-optimized recipes
π Meal Planning
- Weekly meal plans
- Budget-aware
- Calorie/macro targeting
- Leftover management
πͺ Fitness Integration
- Apple Health & Google Fit sync
- Workout logging
- Calorie tracking
π Restaurant Tracking
- AU/NZ chain nutrition
- Healthier alternatives
π¦ Barcode Nutrition
- Product lookup
- Allergen checking
πΆ Kids Nutrition
- School lunch planning
- Allergen-free meals
Usage
Inference API
import requests
API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fvasu24%2Fgroot-inosh-v3"
headers = {"Authorization": f"Bearer {YOUR_HF_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Example: Add pantry item
output = query({"inputs": "Add 500g chicken breast to pantry"})
print(output)
# Expected: {"action": "add_pantry", "item": {"name": "Chicken breast", "quantity": 500, "unit": "g", ...}}
# Example: Recipe suggestions
output = query({"inputs": "Show me quick Italian recipes under 30 minutes"})
print(output)
Load Locally
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B-Instruct")
# Load adapter
model = PeftModel.from_pretrained(base_model, "vasu24/groot-inosh-v3")
model = model.merge_and_unload()
# Generate
messages = [
{"role": "system", "content": "You are GROOT, a kitchen AI assistant..."},
{"role": "user", "content": "Add 500g chicken to pantry"}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=500)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Training Details
- Dataset: 29,000 samples
- Categories: 9 feature types
- Iterations: 1000 (best checkpoint: 300)
- Training Loss: 0.177
- Validation Loss: 0.176
- Method: LoRA fine-tuning on Llama 3.2 1B
JSON Response Format
GROOT responds with structured JSON for actions:
Pantry:
{"action": "add_pantry", "item": {"name": "Chicken breast", "quantity": 500, "unit": "g", "category": "Meat", "location": "fridge"}}
Recipes:
{"action": "suggest_recipes", "recipes": [{"name": "Pasta Carbonara", "time_minutes": 25, "difficulty": "easy", "ingredients": [...]}]}
Shopping:
{"action": "create_list", "store": "Woolworths", "items": [{"name": "Milk", "quantity": 2, "unit": "L"}]}
Limitations
- Trained specifically for AU/NZ market
- Uses metric units only
- Prices in AUD/NZD
- May not be accurate for other regions
License
Apache 2.0
Contact
- Developer: Vasu Kapoor
- App: iNosh - Smart Pantry Management
- GitHub: Coming soon
Citation
@misc{inosh-ai-2025,
title={iNosh AI: Kitchen Assistant for Australia & New Zealand},
author={Vasu Kapoor},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/vasu24/inosh-ai}
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support