iNosh AI - Kitchen Assistant

Intelligent Kitchen Assistant for Australian & New Zealand Users

iNosh AI is a fine-tuned Llama 3.2 1B model specialized for kitchen management, meal planning, and nutrition tracking.

Model Details

  • Base Model: unsloth/Llama-3.2-1B-Instruct
  • Fine-tuning: LoRA adapters (22MB)
  • Training Data: 29,000 samples across 9 feature categories
  • Training Loss: 0.176 (excellent)
  • Target Market: Australia & New Zealand

Features

🏠 Pantry Management

  • Add/edit/delete pantry items
  • Expiry tracking & alerts
  • Low stock detection
  • Barcode scanning (AU/NZ brands)

πŸ›’ Shopping Lists

  • Store-specific lists (Woolworths, Coles, Countdown, IGA, Pak'nSave)
  • Budget tracking
  • Price estimation (AUD/NZD)
  • Aisle organization

🍳 Recipe Suggestions (15 Cuisines)

  • Australian, New Zealand (Māori), Chinese, Indian, Italian, Greek, Thai, Vietnamese, Japanese, Korean, Lebanese, Mexican, French, Spanish, Indonesian
  • Dietary restrictions (halal, kosher, vegan, gluten-free, etc.)
  • Nutrition-optimized recipes

πŸ“… Meal Planning

  • Weekly meal plans
  • Budget-aware
  • Calorie/macro targeting
  • Leftover management

πŸ’ͺ Fitness Integration

  • Apple Health & Google Fit sync
  • Workout logging
  • Calorie tracking

πŸ” Restaurant Tracking

  • AU/NZ chain nutrition
  • Healthier alternatives

πŸ“¦ Barcode Nutrition

  • Product lookup
  • Allergen checking

πŸ‘Ά Kids Nutrition

  • School lunch planning
  • Allergen-free meals

Usage

Inference API

import requests

API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fvasu24%2Fgroot-inosh-v3"
headers = {"Authorization": f"Bearer {YOUR_HF_TOKEN}"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# Example: Add pantry item
output = query({"inputs": "Add 500g chicken breast to pantry"})
print(output)
# Expected: {"action": "add_pantry", "item": {"name": "Chicken breast", "quantity": 500, "unit": "g", ...}}

# Example: Recipe suggestions
output = query({"inputs": "Show me quick Italian recipes under 30 minutes"})
print(output)

Load Locally

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

# Load base model
base_model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B-Instruct")

# Load adapter
model = PeftModel.from_pretrained(base_model, "vasu24/groot-inosh-v3")
model = model.merge_and_unload()

# Generate
messages = [
    {"role": "system", "content": "You are GROOT, a kitchen AI assistant..."},
    {"role": "user", "content": "Add 500g chicken to pantry"}
]

prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=500)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Training Details

  • Dataset: 29,000 samples
  • Categories: 9 feature types
  • Iterations: 1000 (best checkpoint: 300)
  • Training Loss: 0.177
  • Validation Loss: 0.176
  • Method: LoRA fine-tuning on Llama 3.2 1B

JSON Response Format

GROOT responds with structured JSON for actions:

Pantry:

{"action": "add_pantry", "item": {"name": "Chicken breast", "quantity": 500, "unit": "g", "category": "Meat", "location": "fridge"}}

Recipes:

{"action": "suggest_recipes", "recipes": [{"name": "Pasta Carbonara", "time_minutes": 25, "difficulty": "easy", "ingredients": [...]}]}

Shopping:

{"action": "create_list", "store": "Woolworths", "items": [{"name": "Milk", "quantity": 2, "unit": "L"}]}

Limitations

  • Trained specifically for AU/NZ market
  • Uses metric units only
  • Prices in AUD/NZD
  • May not be accurate for other regions

License

Apache 2.0

Contact

  • Developer: Vasu Kapoor
  • App: iNosh - Smart Pantry Management
  • GitHub: Coming soon

Citation

@misc{inosh-ai-2025,
  title={iNosh AI: Kitchen Assistant for Australia & New Zealand},
  author={Vasu Kapoor},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/vasu24/inosh-ai}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support