IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding
Paper
•
2009.05387
•
Published
Finetuned the IndoBERT-Lite Large Model (phase2 - uncased) model on the IndoNLU SmSA dataset following the procedues stated in the paper IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding.
from transformers import pipeline
classifier = pipeline("text-classification",
model='tyqiangz/indobert-lite-large-p2-smsa',
return_all_scores=True)
text = "Penyakit koronavirus 2019"
prediction = classifier(text)
prediction
"""
Output:
[[{'label': 'positive', 'score': 0.0006000096909701824},
{'label': 'neutral', 'score': 0.01223431620746851},
{'label': 'negative', 'score': 0.987165629863739}]]
"""
Finetuning hyperparameters:
Classes:
Performance metrics on SmSA validation dataset