YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
πͺ Affordance-based Novel Concept Generator (Kandinsky-3 Fine-Tuned)
This is a fine-tuned version of the Kandinsky-3 text-to-image pipeline, designed to generate novel object and furniture concepts by combining affordance-driven functionalities (e.g., "sofa + bed + cargo + bicycle").
π How to Use
import os
import sys
import torch
from kandinsky3 import get_T2I_pipeline, get_T2I_Flash_pipeline
# Add kandinsky3 to Python path
sys.path.append('..')
# Set device and dtype maps
device_map = torch.device('cuda:0')
dtype_map = {
'unet': torch.float32,
'text_encoder': torch.float32,
'movq': torch.float32,
}
# Load the Flash text-to-image pipeline
t2i_pipe = get_T2I_Flash_pipeline(
device_map=device_map,
dtype_map=dtype_map,
cache_dir="./cache/"
)
# Load fine-tuned UNet weights
t2i_pipe.unet.load_state_dict(torch.load(
"unet_model_checkpoint.pt",
map_location=device_map
))
# Generate image from prompt
res = t2i_pipe(
text="a new furniture design that has functions from sofa, bed, cargo, bicycle",
steps=50
)[0]
# Save the result
res.save("generated_image.jpg")
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support