Spaces:
Running
on
Zero
Running
on
Zero
File size: 48,709 Bytes
72775f2 0e1bc9b 72775f2 012925a 72775f2 012925a 72775f2 306b92b 72775f2 f281853 72775f2 012925a 72775f2 f281853 72775f2 d29f474 72775f2 012925a f281853 012925a f281853 72775f2 f281853 72775f2 012925a 72775f2 0e1bc9b 72775f2 3249c76 72775f2 012925a 72775f2 306b92b 012925a 306b92b 012925a 72775f2 012925a 72775f2 0e1bc9b 72775f2 0e1bc9b 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 0e1bc9b 012925a 72775f2 0e1bc9b 72775f2 012925a 72775f2 012925a 72775f2 012925a 306b92b 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 0e1bc9b 012925a 72775f2 0e1bc9b 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 306b92b 72775f2 f281853 72775f2 0e1bc9b 72775f2 012925a 72775f2 f281853 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 306b92b 3249c76 012925a 72775f2 012925a 306b92b 3249c76 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a e14a05d 012925a 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 3249c76 72775f2 012925a 3249c76 72775f2 012925a 72775f2 012925a 72775f2 012925a e14a05d 012925a 72775f2 012925a 72775f2 012925a 72775f2 306b92b f281853 72775f2 012925a 72775f2 012925a 72775f2 012925a 72775f2 59a0410 72775f2 0e1bc9b f281853 59a0410 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 |
#!/usr/bin/env python3
"""
Gradio Demo App for Patchioner Model - Trace-based Image Captioning
This demo allows users to:
1. Upload or select an image
2. Draw traces on the image using Gradio's ImageEditor
3. Generate captions for the traced regions using a pre-trained Patchioner model
Author: Generated for decap-dino project
"""
import os
import shutil
import time
import glob
try:
import spaces
except ModuleNotFoundError:
print("Warning: 'spaces' module not found, using mock decorator for local testing.")
# local testing, mock decorator
class spaces:
@staticmethod
def GPU(func):
return func
import gradio as gr
USE_BBOX_ANNOTATOR = True
if not USE_BBOX_ANNOTATOR:
from gradio_image_annotation import image_annotator as foo_image_annotator
else:
from gradio_bbox_annotator.bbox_annotator import BBoxAnnotator
import torch
import yaml
import traceback
from pathlib import Path
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from typing import Any, List, Dict, Tuple
from patchioner import Patchioner
# colors for brush - orange, green, blue, magenta, yellow with ~60% opacity
colors = ["#ffa2009d", "#00ff0099", "#0000ff96""#ff00ff97", "#ffa60099"]
color_index = 0
# Global variable to store the loaded model
loaded_model = None
model_config_path = None
device = "cuda" if torch.cuda.is_available() else "cpu"
# Default model configuration
DEFAULT_MODEL_CONFIG = "https://huggingface.co/Ruggero1912/Patch-ioner_talk2dino_decap_COCO_Captions"
# Example images directory
current_dir = os.path.dirname(__file__)
EXAMPLE_IMAGES_DIR = Path(os.path.join(current_dir, 'example-images')).resolve()
CONFIGS_DIR = Path(os.path.join(current_dir, 'configs')).resolve()
def initialize_default_model() -> str:
"""Initialize the default model at startup."""
global loaded_model, model_config_path
try:
# Look for the default config file
default_config_path = CONFIGS_DIR / DEFAULT_MODEL_CONFIG
if not default_config_path.exists():
print( f"Default config file not found locally." )
config = DEFAULT_MODEL_CONFIG # Assume it's a URL or model identifier
print( f"Attempting to load model as identifier: {config}" )
else:
config = default_config_path
print(f"Loading default model: {DEFAULT_MODEL_CONFIG}")
# Load the model using the from_config class method
model = Patchioner.from_config(config, device=device)
model.eval()
model.to(device)
# Store the model globally
loaded_model = model
model_config_path = str(default_config_path)
return f"β
Default model loaded: {DEFAULT_MODEL_CONFIG} on {device}"
except Exception as e:
error_msg = f"β Error loading default model: {str(e)}"
print(error_msg)
print(traceback.format_exc())
return error_msg
def get_example_images(limit=None) -> List[str]:
"""Get list of example images for the demo as file paths."""
example_images = []
if EXAMPLE_IMAGES_DIR.exists():
for ext in ['*.jpg', '*.jpeg', '*.png']:
example_images.extend(str(p) for p in EXAMPLE_IMAGES_DIR.glob(ext))
if limit is not None:
example_images = example_images[:limit]
return example_images
def get_example_configs() -> List[str]:
"""Get list of example config files."""
example_configs = []
if CONFIGS_DIR.exists():
example_configs = [str(p) for p in CONFIGS_DIR.glob("*.yaml")]
else:
print(f"Warning: Configs directory {CONFIGS_DIR} does not exist.")
return sorted(example_configs)
def cleanup_gradio_cache(max_folders: int = 100, gradio_temp_dir: str = "/tmp/gradio"):
"""
Clean up old Gradio temporary folders to prevent disk space issues.
Args:
max_folders: Maximum number of cache folders to keep (default: 100)
gradio_temp_dir: Path to Gradio temporary directory (default: /tmp/gradio)
"""
try:
if not os.path.exists(gradio_temp_dir):
return
# Get all subdirectories in the gradio temp folder
cache_dirs = []
for item in os.listdir(gradio_temp_dir):
item_path = os.path.join(gradio_temp_dir, item)
if os.path.isdir(item_path):
cache_dirs.append(item_path)
# If we don't have too many folders, no cleanup needed
if len(cache_dirs) <= max_folders:
return
# Sort by modification time (oldest first)
cache_dirs.sort(key=os.path.getmtime)
# Calculate how many folders to delete
folders_to_delete = len(cache_dirs) - max_folders
folders_to_remove = cache_dirs[:folders_to_delete]
# Delete the oldest folders
deleted_count = 0
for folder_path in folders_to_remove:
try:
shutil.rmtree(folder_path)
deleted_count += 1
except Exception as e:
print(f"Warning: Could not delete cache folder {folder_path}: {e}")
if deleted_count > 0:
print(f"π§Ή Cleaned up {deleted_count} old Gradio cache folders to save disk space")
except Exception as e:
print(f"Warning: Error during Gradio cache cleanup: {e}")
def load_model_from_config(config_file_path: str) -> str:
"""
Load the Patchioner model from a config file.
Args:
config_file_path: Path to the YAML configuration file
Returns:
Status message about model loading
"""
global loaded_model, model_config_path
try:
if not config_file_path or not os.path.exists(config_file_path):
return "β Error: Config file path is empty or file does not exist."
print(f"Loading model from config: {config_file_path}")
# Load and parse the config
with open(config_file_path, 'r') as f:
config = yaml.safe_load(f)
# Load the model using the from_config class method
model = Patchioner.from_config(config, device=device)
model.eval()
model.to(device)
# Store the model globally
loaded_model = model
model_config_path = config_file_path
return f"β
Model loaded successfully from {os.path.basename(config_file_path)} on {device}"
except Exception as e:
error_msg = f"β Error loading model: {str(e)}"
print(error_msg)
print(traceback.format_exc())
return error_msg
def process_image_trace_to_coordinates(image_editor_data) -> List[List[Dict[str, float]]]:
"""
Convert Gradio ImageEditor trace data to the coordinate format expected by the model.
The expected format is: [[{"x": float, "y": float, "t": float}, ...], ...]
where coordinates are normalized to [0, 1] and t is a timestamp.
Args:
image_editor_data: Data from Gradio ImageEditor component
Returns:
List of traces in the expected format
"""
try:
print(f"[DEBUG] process_image_trace_to_coordinates called")
print(f"[DEBUG] image_editor_data type: {type(image_editor_data)}")
if image_editor_data is None:
print("[DEBUG] image_editor_data is None")
return []
if isinstance(image_editor_data, dict):
print(f"[DEBUG] Available keys in image_editor_data: {list(image_editor_data.keys())}")
# Check for different possible structures
layers = None
if isinstance(image_editor_data, dict):
if 'layers' in image_editor_data:
layers = image_editor_data['layers']
elif 'composite' in image_editor_data:
# Sometimes gradio stores drawing data differently
composite = image_editor_data['composite']
if isinstance(composite, dict) and 'layers' in composite:
layers = composite['layers']
if not layers:
print("[DEBUG] No layers found in image_editor_data")
return []
traces = []
print(f"[DEBUG] Processing {len(layers)} layers")
# Process each drawing layer - they are PIL Images, not coordinate data
for i, layer in enumerate(layers):
print(f"[DEBUG] Processing layer {i}: {layer}")
# Skip if layer is not a PIL Image or is empty
if not isinstance(layer, Image.Image):
print(f"[DEBUG] Layer {i} is not a PIL Image")
# try to parse from numpy array if possible
if isinstance(layer, np.ndarray):
layer_array = layer
layer = Image.fromarray(layer)
print(f"[DEBUG] Layer {i} converted from numpy array to PIL Image")
else:
continue
else:
# Convert layer to numpy array to find non-transparent pixels
layer_array = np.array(layer)
# Find non-transparent pixels (alpha > 0)
if layer_array.shape[2] == 4: # RGBA
non_transparent = layer_array[:, :, 3] > 0
else: # RGB - assume any non-black pixel is drawn
non_transparent = np.any(layer_array > 0, axis=2)
# Get coordinates of drawn pixels
y_coords, x_coords = np.where(non_transparent)
if len(x_coords) == 0:
print(f"[DEBUG] Layer {i} has no drawn pixels")
continue
print(f"[DEBUG] Layer {i} has {len(x_coords)} drawn pixels")
# Convert pixel coordinates to trace format
trace_points = []
img_height, img_width = layer_array.shape[:2]
# Sample some points from the drawn pixels (to avoid too many points)
num_points = min(len(x_coords), 100) # Limit to 100 points max
if num_points > 0:
# Sample evenly spaced indices
indices = np.linspace(0, len(x_coords) - 1, num_points, dtype=int)
sampled_x = x_coords[indices]
sampled_y = y_coords[indices]
# Convert to normalized coordinates and create trace points
for idx, (x, y) in enumerate(zip(sampled_x, sampled_y)):
# Normalize coordinates to [0, 1]
x_norm = float(x) / img_width if img_width > 0 else 0
y_norm = float(y) / img_height if img_height > 0 else 0
# Clamp to [0, 1] range
x_norm = max(0, min(1, x_norm))
y_norm = max(0, min(1, y_norm))
# Add timestamp (arbitrary progression)
t = idx * 0.1
trace_points.append({
"x": x_norm,
"y": y_norm,
"t": t
})
if trace_points:
traces.append(trace_points)
return traces
except Exception as e:
print(f"Error processing image trace: {e}")
print(traceback.format_exc())
return []
def process_bounding_box_coordinates(annotator_data) -> List[List[float]]:
"""
Convert Gradio image_annotator data to bounding box format expected by the model.
Args:
annotator_data: Data from Gradio image_annotator component
Returns:
List of bounding boxes in [x, y, width, height] format
"""
try:
print(f"[DEBUG] process_bounding_box_coordinates called")
print(f"[DEBUG] annotator_data type: {type(annotator_data)}")
#print(f"[DEBUG] annotator_data content: {annotator_data}")
if annotator_data is None:
print("[DEBUG] annotator_data is None")
return []
boxes = []
# Handle the dictionary format from image_annotator
if isinstance(annotator_data, dict):
print(f"[DEBUG] Available keys in annotator_data: {list(annotator_data.keys())}")
# Extract boxes from the 'boxes' key
if 'boxes' in annotator_data and annotator_data['boxes']:
for box in annotator_data['boxes']:
if isinstance(box, dict):
# Based on image_annotator.py, boxes have format:
# {"xmin": x, "ymin": y, "xmax": x2, "ymax": y2, "label": ..., "color": ...}
xmin = box.get('xmin', 0)
ymin = box.get('ymin', 0)
xmax = box.get('xmax', 0)
ymax = box.get('ymax', 0)
width = xmax - xmin
height = ymax - ymin
# Convert to [x, y, width, height] format
boxes.append([xmin, ymin, width, height])
else:
print("[DEBUG] No 'boxes' key found or boxes list is empty")
# Handle the tuple format from BBoxAnnotator
elif isinstance(annotator_data, tuple) and len(annotator_data) == 2:
print(f"[DEBUG] Tuple format detected with length {len(annotator_data)}")
box_list = annotator_data[1]
if isinstance(box_list, list):
for box in box_list:
if isinstance(box, (list, tuple)) and len(box) >= 4:
# Assuming box format is [left, top, right, bottom, label (optional)]
left = box[0]
top = box[1]
right = box[2]
bottom = box[3]
width = right - left
height = bottom - top
boxes.append([left, top, width, height])
else:
print("[DEBUG] Second element of tuple is not a list")
print(f"[DEBUG] Found {len(boxes)} bounding boxes: {boxes}")
return boxes
except Exception as e:
print(f"Error processing bounding box: {e}")
print(traceback.format_exc())
return []
def draw_traces_on_image(image: Image.Image, traces: List[List[Dict[str, float]]], captions: List[str], layers: List[Image.Image]) -> Image.Image:
"""
Draw traces on image with colored lines and caption text.
Args:
image: PIL Image to draw on
traces: List of traces (each trace is a list of {x, y, t} dicts with normalized coords)
captions: List of captions corresponding to each trace
Returns:
PIL Image with traces and captions drawn on it
"""
# Create a copy to draw on
img_with_traces = image.copy().convert('RGBA')
img_width, img_height = img_with_traces.size
fontsize = int(min(img_width, img_height) / 30) # Example: 1/30th of the smaller dimension
print(f"[DEBUG] Computed fontsize: {fontsize}")
# Create a transparent overlay for drawing traces with opacity
overlay = Image.new('RGBA', img_with_traces.size, (255, 255, 255, 0))
draw_overlay = ImageDraw.Draw(overlay)
# Create a separate layer for text (no transparency)
draw_final = ImageDraw.Draw(img_with_traces)
# Try to load a font with larger size
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", fontsize)
except:
try:
font = ImageFont.truetype("arial.ttf", fontsize)
except:
font = ImageFont.load_default(fontsize)
img_width, img_height = image.size
for i, (trace, caption) in enumerate(zip(traces, captions)):
# Get color for this trace with alpha channel
color_hex = colors[i % len(colors)]
# Convert hex color to RGBA (with ~60% opacity for lines)
color_rgba = tuple(int(color_hex[j:j+2], 16) for j in (1, 3, 5)) + (150,) # 150/255 β 60% opacity
# Solid color for text
color_rgb = tuple(int(color_hex[j:j+2], 16) for j in (1, 3, 5))
if len(layers) > i:
current_layer = layers[i]
# current_layer is a PIL Image or numpy array, use directly this as overlay
if isinstance(current_layer, Image.Image):
layer_rgba = current_layer.convert('RGBA').resize((img_width, img_height))
# set the layer_rgba to color_rgba where the layer is not transparent
elif isinstance(current_layer, np.ndarray):
layer_rgba = Image.fromarray(current_layer).convert('RGBA').resize((img_width, img_height))
#overlay = Image.alpha_composite(overlay, layer_image)
#continue # Skip drawing trace points if layer is used
datas = layer_rgba.getdata()
newData = []
for item in datas:
if item[3] > 0: # If not transparent
newData.append(color_rgba) # Use the trace color with alpha
else:
newData.append((255, 255, 255, 0)) # Transparent
layer_rgba.putdata(newData)
overlay = Image.alpha_composite(overlay, layer_rgba)
continue # Skip drawing trace points if layer is used
else:
# Convert normalized coordinates to pixel coordinates
points = []
for point in trace:
x_pixel = int(point['x'] * img_width)
y_pixel = int(point['y'] * img_height)
points.append((x_pixel, y_pixel))
# Draw the trace as connected lines with transparency
#if len(points) > 1:
# draw_overlay.line(points, fill=color_rgba, width=8)
# Draw circles at each point for visibility with transparency
for point in points[::2]: # Draw every 2nd point to avoid clutter
draw_overlay.ellipse([point[0]-10, point[1]-10, point[0]+10, point[1]+10], fill=color_rgba)
# Composite the transparent overlay onto the base image
img_with_traces = Image.alpha_composite(img_with_traces, overlay)
# Now draw text on top (without transparency)
draw_final = ImageDraw.Draw(img_with_traces)
for i, (trace, caption) in enumerate(zip(traces, captions)):
color_hex = colors[i % len(colors)]
color_rgb = tuple(int(color_hex[j:j+2], 16) for j in (1, 3, 5))
# Get first point for text placement
points = []
for point in trace:
x_pixel = int(point['x'] * img_width)
y_pixel = int(point['y'] * img_height)
points.append((x_pixel, y_pixel))
# Draw caption text near the first point of the trace
if points:
text_x, text_y = points[0]
# Draw text background for readability
text_bbox = draw_final.textbbox((text_x, text_y), f"T{i+1}: {caption}", font=font)
draw_final.rectangle(text_bbox, fill=(255, 255, 255, 230))
draw_final.text((text_x, text_y), f"T{i+1}: {caption}", fill=color_rgb + (255,), font=font)
# Convert back to RGB
return img_with_traces.convert('RGB')
def draw_bboxes_on_image(image: Image.Image, bboxes: List[List[float]], captions: List[str]) -> Image.Image:
"""
Draw bounding boxes on image with colored rectangles and caption text.
Args:
image: PIL Image to draw on
bboxes: List of bounding boxes in [x, y, width, height] format
captions: List of captions corresponding to each bbox
Returns:
PIL Image with bboxes and captions drawn on it
"""
# Create a copy to draw on
img_with_bboxes = image.copy()
draw = ImageDraw.Draw(img_with_bboxes)
# compute fontsize depending on image size
img_width, img_height = image.size
fontsize = int(min(img_width, img_height) / 30) # Example: 1/30th of the smaller dimension
print(f"[DEBUG] Computed fontsize: {fontsize}")
# Try to load a font with larger size
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", fontsize)
except:
try:
font = ImageFont.truetype("arial.ttf", fontsize)
except:
font = ImageFont.load_default(fontsize)
for i, (bbox, caption) in enumerate(zip(bboxes, captions)):
# Get color for this bbox (remove alpha for PIL)
color_hex = colors[i % len(colors)]
# Convert hex color to RGB (ignoring alpha)
color_rgb = tuple(int(color_hex[j:j+2], 16) for j in (1, 3, 5))
# Extract bbox coordinates
x, y, w, h = bbox
# Draw the bounding box
draw.rectangle([x, y, x + w, y + h], outline=color_rgb, width=4)
# Draw caption text at the top-left corner of the bbox
text_x, text_y = x, max(0, y - 25) # Place text above the box if possible
# Draw text background for readability
text_bbox = draw.textbbox((text_x, text_y), f"{caption}", font=font)
draw.rectangle(text_bbox, fill=(255, 255, 255, 200))
draw.text((text_x, text_y), f"{caption}", fill=color_rgb, font=font)
return img_with_bboxes
def generate_caption(mode, image_data) -> Tuple[str, Image.Image]:
"""
Generate caption for the image and traces/bboxes using the loaded model.
Args:
mode: Either "trace" or "bbox" mode
image_data: Data from Gradio ImageEditor or Annotate component
Returns:
Tuple of (generated caption text, annotated image)
"""
global loaded_model
# Clean up old cache folders on each generation to keep disk usage under control
cleanup_gradio_cache(max_folders=30) # More aggressive cleanup during active use
try:
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
print(f"[{current_time}] generate_caption called with mode: {mode}")
print(f"[DEBUG] image_data type: {type(image_data)}")
print(f"[DEBUG] image_data content: {image_data}")
if loaded_model is None:
return "β Error: No model loaded. Please load a model first using the config file.", None
# Handle different input formats from Gradio components
image = None
if image_data is None:
return "β Error: No image data provided.", None
# Check if it's a PIL Image directly
if isinstance(image_data, Image.Image):
print("[DEBUG] Received PIL Image directly")
image = image_data
# Check if it's a dict (from image_annotator component)
elif isinstance(image_data, dict):
print(f"[DEBUG] Received dict with keys: {list(image_data.keys())}")
if 'image' in image_data:
image_array = image_data['image']
# Convert numpy array to PIL Image if needed
if hasattr(image_array, 'shape') and len(image_array.shape) == 3:
print("[DEBUG] Converting numpy array to PIL Image")
image = Image.fromarray(image_array)
else:
image = image_array
elif 'background' in image_data:
image_array = image_data['background']
# Convert numpy array to PIL Image if needed
if hasattr(image_array, 'shape') and len(image_array.shape) == 3:
print("[DEBUG] Converting numpy array to PIL Image")
image = Image.fromarray(image_array)
else:
image = image_array
else:
return f"β Error: No image found in data. Available keys: {list(image_data.keys())}", None
# Check for tuple/list format (from ImageEditor component)
elif isinstance(image_data, (tuple, list)) and len(image_data) >= 1:
print(f"[DEBUG] Received tuple/list with {len(image_data)} elements")
image = image_data[0] # First element should be the image
# image can be a path to the image or a PIL Image
if isinstance(image, str):
if os.path.exists(image):
print("[DEBUG] Loading image from file path")
image = Image.open(image)
else:
print(f"β Error: Image path does not exist: {image}")
if not isinstance(image, Image.Image):
# Sometimes the structure might be different, search for PIL Image
for item in image_data:
if isinstance(item, Image.Image):
image = item
break
else:
return f"β Error: Unexpected data type: {type(image_data)}", None
if image is None:
return "β Error: Image is None.", None
# Convert PIL image if necessary
if not isinstance(image, Image.Image):
return "β Error: Invalid image format.", None
# Convert image to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
if mode == "trace":
return generate_trace_caption(image_data, image)
elif mode == "bbox":
return generate_bbox_caption(image_data, image)
else:
return f"β Error: Unknown mode: {mode}", None
except Exception as e:
error_msg = f"β Error generating caption: {str(e)}"
print(error_msg)
print(traceback.format_exc())
return error_msg, None
@spaces.GPU
def generate_trace_caption(image_data, image) -> Tuple[str, Image.Image]:
"""Generate caption using traces."""
global loaded_model
loaded_model.to("cuda")
try:
# Process traces
print("[DEBUG] Processing traces...")
traces = process_image_trace_to_coordinates(image_data)
print(f"[DEBUG] Found {len(traces)} traces")
if not traces:
# For debugging, let's generate a simple image caption instead of failing
print("[DEBUG] No traces found, generating image caption instead")
image_tensor = loaded_model.image_transforms(image).unsqueeze(0).to(device)
with torch.no_grad():
outputs = loaded_model(
image_tensor,
get_cls_capt=True, # Get class caption as fallback
get_patch_capts=False,
get_avg_patch_capt=False
)
if 'cls_capt' in outputs:
return f"π No traces drawn. Image caption: {outputs['cls_capt']}", image
else:
return "β Error: No traces detected. Please draw some traces on the image.", None
print(f"Processing {len(traces)} traces")
# Prepare image tensor
image_tensor = loaded_model.image_transforms(image).unsqueeze(0).to(device)
# Generate caption using the model
with torch.no_grad():
outputs = loaded_model(
image_tensor,
traces=traces,
get_cls_capt=False, # We want trace captions, not class captions
get_patch_capts=False,
get_avg_patch_capt=False
)
# Extract the trace captions
if 'trace_capts' in outputs:
captions = outputs['trace_capts']
if isinstance(captions, list) and captions:
captions = [cap.replace("<|startoftext|>", "").replace("<|endoftext|>", "") for cap in captions]
# Draw traces on the image
annotated_image = draw_traces_on_image(image, traces, captions, layers=image_data.get('layers', []) if isinstance(image_data, dict) else [])
# Join multiple captions if there are multiple traces
if len(captions) == 1:
return f"Generated Caption: {captions[0]}", annotated_image
else:
formatted_captions = []
for i, caption in enumerate(captions, 1):
formatted_captions.append(f"<span style=\"color:{colors[(i-1)%(len(colors))]}\">Trace {i}: {caption}</span>")
return "Generated Captions:\n\n" + "\n\n".join(formatted_captions), annotated_image
elif isinstance(captions, str):
captions_list = [captions.replace("<|startoftext|>", "").replace("<|endoftext|>", "")]
annotated_image = draw_traces_on_image(image, traces, captions_list)
return f"Generated Caption: {captions}", annotated_image
else:
return "β Error: No captions generated.", None
else:
return "β Error: Model did not return trace captions.", None
except Exception as e:
error_msg = f"β Error generating trace caption: {str(e)}"
print(error_msg)
print(traceback.format_exc())
return error_msg, None
@spaces.GPU
def generate_bbox_caption(image_data, image) -> Tuple[str, Image.Image]:
"""Generate caption using bounding boxes."""
global loaded_model
loaded_model.to("cuda")
original_image_size = image.size # (width, height)
image_tensor = loaded_model.image_transforms(image).unsqueeze(0).to(device)
transformed_image_size = image_tensor.shape[2:] # (height, width)
try:
# Process bounding boxes
print("[DEBUG] Processing bounding boxes...")
bboxes = process_bounding_box_coordinates(image_data)
print(f"[DEBUG] Found {len(bboxes)} bounding boxes")
if not bboxes:
# For debugging, let's generate a simple image caption instead of failing
print("[DEBUG] No bounding boxes found, generating image caption instead")
with torch.no_grad():
outputs = loaded_model(
image_tensor,
get_cls_capt=True, # Get class caption as fallback
get_patch_capts=False,
get_avg_patch_capt=False
)
if 'cls_capt' in outputs:
return f"π No bounding boxes drawn. Image caption: {outputs['cls_capt']}", image
else:
return "β Error: No bounding boxes detected. Please draw some bounding boxes on the image.", None
print(f"Processing {len(bboxes)} bounding boxes")
# scale bboxes to transformed image size
scale_x = transformed_image_size[1] / original_image_size[0]
scale_y = transformed_image_size[0] / original_image_size[1]
scaled_bboxes = []
for bbox in bboxes:
x, y, w, h = bbox
x = x * scale_x
y = y * scale_y
w = w * scale_x
h = h * scale_y
scaled_bboxes.append([x, y, w, h])
bbox_tensor = torch.tensor([scaled_bboxes]).to(device)
with torch.no_grad():
outputs = loaded_model(
image_tensor,
bboxes=bbox_tensor,
get_cls_capt=False,
get_patch_capts=False,
get_avg_patch_capt=False
)
if 'bbox_capts' in outputs:
print(f"[DEBUG] bbox_capts content: {outputs['bbox_capts']}")
captions = outputs['bbox_capts']
if isinstance(captions, list) and captions:
if isinstance(captions[0], list):
captions = captions[0] # Unwrap nested list if needed
captions = [cap.replace("<|startoftext|>", "").replace("<|endoftext|>", "") for cap in captions]
# Draw bboxes on the image
annotated_image = draw_bboxes_on_image(image, bboxes, captions)
if len(captions) == 1:
return f"Generated Caption: {captions[0]}", annotated_image
else:
formatted_captions = []
for i, caption in enumerate(captions, 1):
formatted_captions.append(f"<span style=\"color:{colors[(i-1)%(len(colors))]}\">BBox {i}: {caption}</span>")
return "Generated Captions:\n\n" + "\n\n".join(formatted_captions), annotated_image
elif isinstance(captions, str):
captions_list = [captions.replace("<|startoftext|>", "").replace("<|endoftext|>", "")]
annotated_image = draw_bboxes_on_image(image, bboxes, captions_list)
return f"Generated Caption: {captions}", annotated_image
else:
return "β Error: No captions generated.", None
else:
return "β Error: Model did not return bbox captions.", None
except Exception as e:
error_msg = f"β Error generating bbox caption: {str(e)}"
print(error_msg)
print(traceback.format_exc())
return error_msg, None
# def change_layer(current_layer):
# """Each time the button is pressed, change the brush color."""
# global color_index
# color_index = (color_index + 1) % len(colors)
# return gr.update(elem_id="image_editor", brush=gr.Brush(default_size=10, colors=[colors[color_index]], color_mode="fixed"))
def resize_image_if_needed(editor_value, max_dim=1024):
"""
Resizes the background image if it exceeds max_dim, or returns gr.skip()
to prevent a change event from looping.
"""
# Handle no image case
if editor_value is None:
print("No image present")
return gr.skip()
# If some layers were already drawn, do not resize (to avoid losing drawings)
if 'layers' in editor_value and len(editor_value['layers']):
print("Not resizing because layers are present")
return gr.skip()
background_image = editor_value.get('background')
# Handle missing background case
if background_image is None:
print("No background image present")
return gr.skip()
width, height = background_image.size
# Check if resizing is necessary (THE CONDITION)
if width > max_dim or height > max_dim:
# --- RESIZING LOGIC ---
# Calculate new dimensions while preserving aspect ratio
if width > height:
new_width = max_dim
new_height = int(height * (max_dim / width))
else:
new_height = max_dim
new_width = int(width * (max_dim / height))
resized_image = background_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
print(f"Resizing image from ({width}, {height}) to ({resized_image.size[0]}, {resized_image.size[1]})")
# Create the new dictionary with the resized image
new_editor_value = editor_value.copy()
new_editor_value['background'] = resized_image
new_editor_value['composite'] = resized_image
# Return the new value (triggers an update and one more change event)
return new_editor_value
# 4. If no resizing was needed, SKIP the update. (THE FIX)
print("No resizing needed")
return gr.skip()
def create_gradio_interface(model_config_name : str):
"""Create and configure the Gradio interface."""
# Clean up old Gradio cache folders to prevent disk space issues
cleanup_gradio_cache(max_folders=50) # Keep only 50 most recent cache folders
# Get example files
example_images = get_example_images()
example_configs = get_example_configs()
custom_js = """
<script>
window.addEventListener("load", () => {
// Hide Crop, Erase, and Color buttons
const cropBtn = document.querySelector('.image-editor__tool[title="Crop"]');
const eraseBtn = document.querySelector('.image-editor__tool[title="Erase"]');
const colorBtn = document.querySelector('.image-editor__tool[title="Color"]');
[cropBtn, eraseBtn, colorBtn].forEach(btn => {
console.log("Going to disable display for ", btn);
if (btn) btn.style.display = "none";
});
// Optionally, select the Brush/Draft tool right away
const brushBtn = document.querySelector('.image-editor__tool[title="Draw"]');
console.log("Selecting brushbtn: ", brushBtn);
if (brushBtn) brushBtn.click();
});
</script>
"""
with gr.Blocks(
title="Patchioner Trace Captioning Demo",
theme=gr.themes.Soft(),
css="""
.gradio-container {
/*max-width: 1200px !important;*/
}
"""
) as demo:
#gr.HTML(custom_js) # inject custom JS
gr.Markdown(f"""
# π― Patchioner Trace Captioning Demo
This demo showcases the **Patchioner** model for generating image captions based on user-drawn traces or bounding boxes.
More details about the Patch-ioner framework can be found in the official [project webpage](https://paciosoft.com/Patch-ioner/).
Patch-ioner is an unified zero-shot captioning framework to describe arbitrary image regions.
## Instructions:
1. Choose between Trace or BBox mode
2. Upload an image or use one of the provided examples
3. Use the appropriate tool to mark areas of interest in the image
4. Click "Generate Caption" to get AI-generated descriptions
> Tip: Use the Layer tool to generate multiple captions for different traces.
""")
# Initialize model status
model_initialization_status = initialize_default_model()
with gr.Row():
gr.Markdown(f"**Model Status:** {model_initialization_status}")
with gr.Column():
gr.Markdown("#### π· Select from example images or upload your own:")
if example_images:
example_gallery = gr.Gallery(
value=example_images,
label="Example Images",
show_label=True,
elem_id="gallery",
columns=4,
rows=2,
object_fit="contain",
height="auto"
)
mode_selector = gr.Radio(
choices=["trace", "bbox"],
value="trace",
label="π Captioning Mode",
info="Choose between trace-based or bounding box-based captioning",
visible=True
)
with gr.Row():
with gr.Column():
gr.Markdown("### πΌοΈ Image Editor")
# Image editor for drawing traces (default)
image_editor = gr.ImageEditor(
elem_id="image_editor",
label="Upload image and draw traces",
type="pil",
#crop_size=None,
brush=gr.Brush(default_size=10, colors=[colors[color_index]], color_mode="fixed"), # orange with ~60% opacity
visible=True,
eraser=False,
#transforms=[],
height=600,
#layers=gr.LayerOptions(allow_additional_layers=True, disabled=True),
)
# Image annotator for bounding boxes (hidden by default)
if not USE_BBOX_ANNOTATOR:
image_annotator = foo_image_annotator( #gr.Image(
label="Upload image and draw bounding boxes",
visible=False,
#classes=["object"],
#type="bbox"
#tool="select"
height=600
)
else:
image_annotator = BBoxAnnotator(
label="Upload image and draw bounding boxes",
visible=False,
show_label=True,
show_download_button=False,
interactive=True,
container=True,
categories=["area"]
)
with gr.Column():
gr.Markdown("### πΌοΈ Annotated Image")
output_image = gr.Image(
label="Annotated Image",
type="pil",
visible=True,
height=600
)
with gr.Row():
generate_button = gr.Button("β¨ Generate Caption", variant="primary", size="lg")
with gr.Row():
status_message = gr.TextArea(
elem_id="status_message_textarea",
placeholder="Status messages will appear here...",
visible=True
)
with gr.Row():
output_text = gr.Markdown(
label="Generated Caption",
value="Generated caption will appear here...",
#lines=5,
#max_lines=10,
#interactive=False
)
# Event handlers
def toggle_input_components(mode):
"""Toggle between image editor and annotator based on mode."""
if mode == "trace":
return gr.update(visible=True), gr.update(visible=False)
else: # bbox mode
return gr.update(visible=False), gr.update(visible=True)
def load_example_image_to_both(evt: gr.SelectData):
"""Load selected example image into both components."""
if not USE_BBOX_ANNOTATOR:
empty_annotated_format = {"image": None, "boxes": [], "orientation": 0}
else:
empty_annotated_format = (None, [])
try:
example_images = get_example_images()
if evt.index < len(example_images):
selected_image_path = example_images[evt.index]
img = Image.open(selected_image_path).convert('RGB')
# For ImageEditor, return the PIL image directly
# For image_annotator, return dict format as expected by the component
if not USE_BBOX_ANNOTATOR:
annotated_format = {
"image": img,
"boxes": [],
"orientation": 0
}
else:
annotated_format = tuple((selected_image_path, []))
# convert to numpy array for ImageEditor
img = np.array(img)
return img, annotated_format
return None, empty_annotated_format
except Exception as e:
print(f"Error loading example image: {e}")
return None, empty_annotated_format
def generate_caption_wrapper(mode, image_editor_data, image_annotator_data):
"""Wrapper to call generate_caption with the appropriate data based on mode."""
if mode == "trace":
return generate_caption(mode, image_editor_data)
else: # bbox mode
return generate_caption(mode, image_annotator_data)
def generate_with_feedback(mode, image_editor_data, image_annotator_data):
"""
Wrapper that provides UI feedback during caption generation.
Yields intermediate states to update the UI.
"""
# First yield: Show processing status
yield (
"β³ Processing your request...",
gr.update(elem_id="status_message_textarea", value="π Generating caption... Please wait.", visible=True),
None
)
# Generate caption
caption_text, annotated_image = generate_caption_wrapper(mode, image_editor_data, image_annotator_data)
# Final yield: Show results and clear status
yield (
caption_text,
gr.update(elem_id="status_message_textarea", value="", visible=True),
annotated_image
)
# Connect event handlers
mode_selector.change(
fn=toggle_input_components,
inputs=mode_selector,
outputs=[image_editor, image_annotator]
)
generate_button.click(
fn=generate_with_feedback,
inputs=[mode_selector, image_editor, image_annotator],
outputs=[output_text, status_message, output_image]
)
if example_images:
example_gallery.select(
fn=load_example_image_to_both,
outputs=[image_editor, image_annotator]
)
#image_editor.change(
# fn=resize_image_if_needed,
# inputs=[image_editor],
# outputs=[image_editor],
# # The queue=False means this runs immediately on the change event,
# # which is usually desired for immediate UI updates.
# #queue=False
#)
gr.Markdown(f"""
### π‘ Tips:
- **Mode Selection**: Switch between trace and bounding box modes based on your needs
- **Trace Mode**: Draw continuous lines over areas you want to describe
- **BBox Mode**: Draw rectangular bounding boxes around objects of interest
- **Multiple Areas**: Change Layer to create multiple traces/boxes for different objects to get individual captions
### π§ Technical Details:
- **Trace Mode**: Converts drawings to normalized (x, y) coordinates
- **BBox Mode**: Uses bounding box coordinates for region-specific captioning
- **Processing**: Each trace/bbox is processed separately to generate corresponding captions. Aggregated region representations also attend to the global image context.
### Use the Patch-ioner framework for you projects
- just use `pip install git+https://github.com/Ruggero1912/Patch-ioner` to install the Patch-ioner package
- check the [official project webpage](https://paciosoft.com/Patch-ioner/) and the [GitHub repository](https://github.com/Ruggero1912/Patch-ioner) for more details
""")
return demo
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Patchioner Trace Captioning Demo")
parser.add_argument("--port", type=int, default=4141, help="Port to run the Gradio app on")
parser.add_argument("--local", action="store_true", help="Run the app locally. If not set, the app will be use default values for Gradio sharing host and ports.")
args = parser.parse_args()
print("Starting Patchioner Trace Captioning Demo...")
print(f"Using device: {device}")
print(f"Default model: {DEFAULT_MODEL_CONFIG}")
print(f"Example images directory: {EXAMPLE_IMAGES_DIR}")
print(f"Configs directory: {CONFIGS_DIR}")
# Initial cleanup of old Gradio cache folders on startup
print("π§Ή Cleaning up old cache folders...")
cleanup_gradio_cache(max_folders=20) # Very aggressive cleanup on startup
demo = create_gradio_interface(DEFAULT_MODEL_CONFIG)
if not args.local:
demo.launch()
else:
demo.launch(
server_name="0.0.0.0",
server_port=args.port,
share=True,
debug=True
)
|