Spaces:
Running
on
Zero
Running
on
Zero
Commit
Β·
72775f2
1
Parent(s):
2f13aa0
added app.py file
Browse files
app.py
ADDED
|
@@ -0,0 +1,772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Gradio Demo App for Patchioner Model - Trace-based Image Captioning
|
| 4 |
+
|
| 5 |
+
This demo allows users to:
|
| 6 |
+
1. Upload or select an image
|
| 7 |
+
2. Draw traces on the image using Gradio's ImageEditor
|
| 8 |
+
3. Generate captions for the traced regions using a pre-trained Patchioner model
|
| 9 |
+
|
| 10 |
+
Author: Generated for decap-dino project
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
import sys
|
| 14 |
+
import os
|
| 15 |
+
|
| 16 |
+
import gradio as gr
|
| 17 |
+
|
| 18 |
+
from gradio_image_annotation import image_annotator as foo_image_annotator
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import yaml
|
| 22 |
+
import json
|
| 23 |
+
import traceback
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
from PIL import Image
|
| 26 |
+
import numpy as np
|
| 27 |
+
from typing import List, Dict, Optional
|
| 28 |
+
|
| 29 |
+
# Import the Patchioner model from the src directory
|
| 30 |
+
from src.model import Patchioner
|
| 31 |
+
|
| 32 |
+
# Global variable to store the loaded model
|
| 33 |
+
loaded_model = None
|
| 34 |
+
model_config_path = None
|
| 35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
|
| 37 |
+
# Default model configuration
|
| 38 |
+
DEFAULT_MODEL_CONFIG = "mlp.k.yaml"
|
| 39 |
+
|
| 40 |
+
# Example images directory
|
| 41 |
+
current_dir = os.path.dirname(__file__)
|
| 42 |
+
EXAMPLE_IMAGES_DIR = Path(os.path.join(current_dir, 'example-images')).resolve()
|
| 43 |
+
CONFIGS_DIR = Path(os.path.join(current_dir, '../Patch-ioner/configs')).resolve()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def initialize_default_model() -> str:
|
| 47 |
+
"""Initialize the default model at startup."""
|
| 48 |
+
global loaded_model, model_config_path
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
# Look for the default config file
|
| 52 |
+
default_config_path = CONFIGS_DIR / DEFAULT_MODEL_CONFIG
|
| 53 |
+
|
| 54 |
+
if not default_config_path.exists():
|
| 55 |
+
return f"β Default config file not found: {default_config_path}"
|
| 56 |
+
|
| 57 |
+
print(f"Loading default model: {DEFAULT_MODEL_CONFIG}")
|
| 58 |
+
|
| 59 |
+
# Load and parse the config
|
| 60 |
+
with open(default_config_path, 'r') as f:
|
| 61 |
+
config = yaml.safe_load(f)
|
| 62 |
+
|
| 63 |
+
# Load the model using the from_config class method
|
| 64 |
+
model = Patchioner.from_config(config, device=device)
|
| 65 |
+
model.eval()
|
| 66 |
+
model.to(device)
|
| 67 |
+
|
| 68 |
+
# Store the model globally
|
| 69 |
+
loaded_model = model
|
| 70 |
+
model_config_path = str(default_config_path)
|
| 71 |
+
|
| 72 |
+
return f"β
Default model loaded: {DEFAULT_MODEL_CONFIG} on {device}"
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
error_msg = f"β Error loading default model: {str(e)}"
|
| 76 |
+
print(error_msg)
|
| 77 |
+
print(traceback.format_exc())
|
| 78 |
+
return error_msg
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def get_example_images(limit=None) -> List[str]:
|
| 82 |
+
"""Get list of example images for the demo."""
|
| 83 |
+
example_images = []
|
| 84 |
+
if EXAMPLE_IMAGES_DIR.exists():
|
| 85 |
+
for ext in ['*.jpg', '*.jpeg', '*.png']:
|
| 86 |
+
example_images.extend(str(p) for p in EXAMPLE_IMAGES_DIR.glob(ext))
|
| 87 |
+
if limit is not None:
|
| 88 |
+
example_images = example_images[:limit]
|
| 89 |
+
return example_images
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_example_configs() -> List[str]:
|
| 93 |
+
"""Get list of example config files."""
|
| 94 |
+
example_configs = []
|
| 95 |
+
if CONFIGS_DIR.exists():
|
| 96 |
+
example_configs = [str(p) for p in CONFIGS_DIR.glob("*.yaml")]
|
| 97 |
+
else:
|
| 98 |
+
print(f"Warning: Configs directory {CONFIGS_DIR} does not exist.")
|
| 99 |
+
return sorted(example_configs)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def load_model_from_config(config_file_path: str) -> str:
|
| 103 |
+
"""
|
| 104 |
+
Load the Patchioner model from a config file.
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
config_file_path: Path to the YAML configuration file
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
Status message about model loading
|
| 111 |
+
"""
|
| 112 |
+
global loaded_model, model_config_path
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
if not config_file_path or not os.path.exists(config_file_path):
|
| 116 |
+
return "β Error: Config file path is empty or file does not exist."
|
| 117 |
+
|
| 118 |
+
print(f"Loading model from config: {config_file_path}")
|
| 119 |
+
|
| 120 |
+
# Load and parse the config
|
| 121 |
+
with open(config_file_path, 'r') as f:
|
| 122 |
+
config = yaml.safe_load(f)
|
| 123 |
+
|
| 124 |
+
# Load the model using the from_config class method
|
| 125 |
+
model = Patchioner.from_config(config, device=device)
|
| 126 |
+
model.eval()
|
| 127 |
+
model.to(device)
|
| 128 |
+
|
| 129 |
+
# Store the model globally
|
| 130 |
+
loaded_model = model
|
| 131 |
+
model_config_path = config_file_path
|
| 132 |
+
|
| 133 |
+
return f"β
Model loaded successfully from {os.path.basename(config_file_path)} on {device}"
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
error_msg = f"β Error loading model: {str(e)}"
|
| 137 |
+
print(error_msg)
|
| 138 |
+
print(traceback.format_exc())
|
| 139 |
+
return error_msg
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def process_image_trace_to_coordinates(image_editor_data) -> List[List[Dict[str, float]]]:
|
| 143 |
+
"""
|
| 144 |
+
Convert Gradio ImageEditor trace data to the coordinate format expected by the model.
|
| 145 |
+
|
| 146 |
+
The expected format is: [[{"x": float, "y": float, "t": float}, ...], ...]
|
| 147 |
+
where coordinates are normalized to [0, 1] and t is a timestamp.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
image_editor_data: Data from Gradio ImageEditor component
|
| 151 |
+
|
| 152 |
+
Returns:
|
| 153 |
+
List of traces in the expected format
|
| 154 |
+
"""
|
| 155 |
+
try:
|
| 156 |
+
print(f"[DEBUG] process_image_trace_to_coordinates called")
|
| 157 |
+
print(f"[DEBUG] image_editor_data type: {type(image_editor_data)}")
|
| 158 |
+
|
| 159 |
+
if image_editor_data is None:
|
| 160 |
+
print("[DEBUG] image_editor_data is None")
|
| 161 |
+
return []
|
| 162 |
+
|
| 163 |
+
if isinstance(image_editor_data, dict):
|
| 164 |
+
print(f"[DEBUG] Available keys in image_editor_data: {list(image_editor_data.keys())}")
|
| 165 |
+
|
| 166 |
+
# Check for different possible structures
|
| 167 |
+
layers = None
|
| 168 |
+
if isinstance(image_editor_data, dict):
|
| 169 |
+
if 'layers' in image_editor_data:
|
| 170 |
+
layers = image_editor_data['layers']
|
| 171 |
+
elif 'composite' in image_editor_data:
|
| 172 |
+
# Sometimes gradio stores drawing data differently
|
| 173 |
+
composite = image_editor_data['composite']
|
| 174 |
+
if isinstance(composite, dict) and 'layers' in composite:
|
| 175 |
+
layers = composite['layers']
|
| 176 |
+
|
| 177 |
+
if not layers:
|
| 178 |
+
print("[DEBUG] No layers found in image_editor_data")
|
| 179 |
+
return []
|
| 180 |
+
|
| 181 |
+
traces = []
|
| 182 |
+
print(f"[DEBUG] Processing {len(layers)} layers")
|
| 183 |
+
|
| 184 |
+
# Process each drawing layer - they are PIL Images, not coordinate data
|
| 185 |
+
for i, layer in enumerate(layers):
|
| 186 |
+
print(f"[DEBUG] Processing layer {i}: {layer}")
|
| 187 |
+
|
| 188 |
+
# Skip if layer is not a PIL Image or is empty
|
| 189 |
+
if not isinstance(layer, Image.Image):
|
| 190 |
+
print(f"[DEBUG] Layer {i} is not a PIL Image")
|
| 191 |
+
continue
|
| 192 |
+
|
| 193 |
+
# Convert layer to numpy array to find non-transparent pixels
|
| 194 |
+
layer_array = np.array(layer)
|
| 195 |
+
|
| 196 |
+
# Find non-transparent pixels (alpha > 0)
|
| 197 |
+
if layer_array.shape[2] == 4: # RGBA
|
| 198 |
+
non_transparent = layer_array[:, :, 3] > 0
|
| 199 |
+
else: # RGB - assume any non-black pixel is drawn
|
| 200 |
+
non_transparent = np.any(layer_array > 0, axis=2)
|
| 201 |
+
|
| 202 |
+
# Get coordinates of drawn pixels
|
| 203 |
+
y_coords, x_coords = np.where(non_transparent)
|
| 204 |
+
|
| 205 |
+
if len(x_coords) == 0:
|
| 206 |
+
print(f"[DEBUG] Layer {i} has no drawn pixels")
|
| 207 |
+
continue
|
| 208 |
+
|
| 209 |
+
print(f"[DEBUG] Layer {i} has {len(x_coords)} drawn pixels")
|
| 210 |
+
|
| 211 |
+
# Convert pixel coordinates to trace format
|
| 212 |
+
trace_points = []
|
| 213 |
+
img_height, img_width = layer_array.shape[:2]
|
| 214 |
+
|
| 215 |
+
# Sample some points from the drawn pixels (to avoid too many points)
|
| 216 |
+
num_points = min(len(x_coords), 100) # Limit to 100 points max
|
| 217 |
+
if num_points > 0:
|
| 218 |
+
# Sample evenly spaced indices
|
| 219 |
+
indices = np.linspace(0, len(x_coords) - 1, num_points, dtype=int)
|
| 220 |
+
sampled_x = x_coords[indices]
|
| 221 |
+
sampled_y = y_coords[indices]
|
| 222 |
+
|
| 223 |
+
# Convert to normalized coordinates and create trace points
|
| 224 |
+
for idx, (x, y) in enumerate(zip(sampled_x, sampled_y)):
|
| 225 |
+
# Normalize coordinates to [0, 1]
|
| 226 |
+
x_norm = float(x) / img_width if img_width > 0 else 0
|
| 227 |
+
y_norm = float(y) / img_height if img_height > 0 else 0
|
| 228 |
+
|
| 229 |
+
# Clamp to [0, 1] range
|
| 230 |
+
x_norm = max(0, min(1, x_norm))
|
| 231 |
+
y_norm = max(0, min(1, y_norm))
|
| 232 |
+
|
| 233 |
+
# Add timestamp (arbitrary progression)
|
| 234 |
+
t = idx * 0.1
|
| 235 |
+
|
| 236 |
+
trace_points.append({
|
| 237 |
+
"x": x_norm,
|
| 238 |
+
"y": y_norm,
|
| 239 |
+
"t": t
|
| 240 |
+
})
|
| 241 |
+
|
| 242 |
+
if trace_points:
|
| 243 |
+
traces.append(trace_points)
|
| 244 |
+
|
| 245 |
+
return traces
|
| 246 |
+
|
| 247 |
+
except Exception as e:
|
| 248 |
+
print(f"Error processing image trace: {e}")
|
| 249 |
+
print(traceback.format_exc())
|
| 250 |
+
return []
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def process_bounding_box_coordinates(annotator_data) -> List[List[float]]:
|
| 254 |
+
"""
|
| 255 |
+
Convert Gradio image_annotator data to bounding box format expected by the model.
|
| 256 |
+
|
| 257 |
+
Args:
|
| 258 |
+
annotator_data: Data from Gradio image_annotator component
|
| 259 |
+
|
| 260 |
+
Returns:
|
| 261 |
+
List of bounding boxes in [x, y, width, height] format
|
| 262 |
+
"""
|
| 263 |
+
try:
|
| 264 |
+
print(f"[DEBUG] process_bounding_box_coordinates called")
|
| 265 |
+
print(f"[DEBUG] annotator_data type: {type(annotator_data)}")
|
| 266 |
+
#print(f"[DEBUG] annotator_data content: {annotator_data}")
|
| 267 |
+
|
| 268 |
+
if annotator_data is None:
|
| 269 |
+
print("[DEBUG] annotator_data is None")
|
| 270 |
+
return []
|
| 271 |
+
|
| 272 |
+
boxes = []
|
| 273 |
+
|
| 274 |
+
# Handle the dictionary format from image_annotator
|
| 275 |
+
if isinstance(annotator_data, dict):
|
| 276 |
+
print(f"[DEBUG] Available keys in annotator_data: {list(annotator_data.keys())}")
|
| 277 |
+
|
| 278 |
+
# Extract boxes from the 'boxes' key
|
| 279 |
+
if 'boxes' in annotator_data and annotator_data['boxes']:
|
| 280 |
+
for box in annotator_data['boxes']:
|
| 281 |
+
if isinstance(box, dict):
|
| 282 |
+
# Based on image_annotator.py, boxes have format:
|
| 283 |
+
# {"xmin": x, "ymin": y, "xmax": x2, "ymax": y2, "label": ..., "color": ...}
|
| 284 |
+
xmin = box.get('xmin', 0)
|
| 285 |
+
ymin = box.get('ymin', 0)
|
| 286 |
+
xmax = box.get('xmax', 0)
|
| 287 |
+
ymax = box.get('ymax', 0)
|
| 288 |
+
|
| 289 |
+
width = xmax - xmin
|
| 290 |
+
height = ymax - ymin
|
| 291 |
+
|
| 292 |
+
# Convert to [x, y, width, height] format
|
| 293 |
+
boxes.append([xmin, ymin, width, height])
|
| 294 |
+
else:
|
| 295 |
+
print("[DEBUG] No 'boxes' key found or boxes list is empty")
|
| 296 |
+
|
| 297 |
+
print(f"[DEBUG] Found {len(boxes)} bounding boxes: {boxes}")
|
| 298 |
+
return boxes
|
| 299 |
+
|
| 300 |
+
except Exception as e:
|
| 301 |
+
print(f"Error processing bounding box: {e}")
|
| 302 |
+
print(traceback.format_exc())
|
| 303 |
+
return []
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def generate_caption(mode, image_data) -> str:
|
| 307 |
+
"""
|
| 308 |
+
Generate caption for the image and traces/bboxes using the loaded model.
|
| 309 |
+
|
| 310 |
+
Args:
|
| 311 |
+
mode: Either "trace" or "bbox" mode
|
| 312 |
+
image_data: Data from Gradio ImageEditor or Annotate component
|
| 313 |
+
|
| 314 |
+
Returns:
|
| 315 |
+
Generated caption or error message
|
| 316 |
+
"""
|
| 317 |
+
global loaded_model
|
| 318 |
+
|
| 319 |
+
try:
|
| 320 |
+
print(f"[DEBUG] generate_caption called with mode: {mode}")
|
| 321 |
+
print(f"[DEBUG] image_data type: {type(image_data)}")
|
| 322 |
+
print(f"[DEBUG] image_data content: {image_data}")
|
| 323 |
+
|
| 324 |
+
if loaded_model is None:
|
| 325 |
+
return "β Error: No model loaded. Please load a model first using the config file."
|
| 326 |
+
|
| 327 |
+
# Handle different input formats from Gradio components
|
| 328 |
+
image = None
|
| 329 |
+
if image_data is None:
|
| 330 |
+
return "β Error: No image data provided."
|
| 331 |
+
|
| 332 |
+
# Check if it's a PIL Image directly
|
| 333 |
+
if isinstance(image_data, Image.Image):
|
| 334 |
+
print("[DEBUG] Received PIL Image directly")
|
| 335 |
+
image = image_data
|
| 336 |
+
# Check if it's a dict (from image_annotator component)
|
| 337 |
+
elif isinstance(image_data, dict):
|
| 338 |
+
print(f"[DEBUG] Received dict with keys: {list(image_data.keys())}")
|
| 339 |
+
if 'image' in image_data:
|
| 340 |
+
image_array = image_data['image']
|
| 341 |
+
# Convert numpy array to PIL Image if needed
|
| 342 |
+
if hasattr(image_array, 'shape') and len(image_array.shape) == 3:
|
| 343 |
+
print("[DEBUG] Converting numpy array to PIL Image")
|
| 344 |
+
image = Image.fromarray(image_array)
|
| 345 |
+
else:
|
| 346 |
+
image = image_array
|
| 347 |
+
elif 'background' in image_data:
|
| 348 |
+
image_array = image_data['background']
|
| 349 |
+
# Convert numpy array to PIL Image if needed
|
| 350 |
+
if hasattr(image_array, 'shape') and len(image_array.shape) == 3:
|
| 351 |
+
print("[DEBUG] Converting numpy array to PIL Image")
|
| 352 |
+
image = Image.fromarray(image_array)
|
| 353 |
+
else:
|
| 354 |
+
image = image_array
|
| 355 |
+
else:
|
| 356 |
+
return f"β Error: No image found in data. Available keys: {list(image_data.keys())}"
|
| 357 |
+
# Check for tuple/list format (from ImageEditor component)
|
| 358 |
+
elif isinstance(image_data, (tuple, list)) and len(image_data) >= 1:
|
| 359 |
+
print(f"[DEBUG] Received tuple/list with {len(image_data)} elements")
|
| 360 |
+
image = image_data[0] # First element should be the image
|
| 361 |
+
if not isinstance(image, Image.Image):
|
| 362 |
+
# Sometimes the structure might be different, search for PIL Image
|
| 363 |
+
for item in image_data:
|
| 364 |
+
if isinstance(item, Image.Image):
|
| 365 |
+
image = item
|
| 366 |
+
break
|
| 367 |
+
else:
|
| 368 |
+
return f"β Error: Unexpected data type: {type(image_data)}"
|
| 369 |
+
|
| 370 |
+
if image is None:
|
| 371 |
+
return "β Error: Image is None."
|
| 372 |
+
|
| 373 |
+
# Convert PIL image if necessary
|
| 374 |
+
if not isinstance(image, Image.Image):
|
| 375 |
+
return "β Error: Invalid image format."
|
| 376 |
+
|
| 377 |
+
# Convert image to RGB if needed
|
| 378 |
+
if image.mode != 'RGB':
|
| 379 |
+
image = image.convert('RGB')
|
| 380 |
+
|
| 381 |
+
if mode == "trace":
|
| 382 |
+
return generate_trace_caption(image_data, image)
|
| 383 |
+
elif mode == "bbox":
|
| 384 |
+
return generate_bbox_caption(image_data, image)
|
| 385 |
+
else:
|
| 386 |
+
return f"β Error: Unknown mode: {mode}"
|
| 387 |
+
|
| 388 |
+
except Exception as e:
|
| 389 |
+
error_msg = f"β Error generating caption: {str(e)}"
|
| 390 |
+
print(error_msg)
|
| 391 |
+
print(traceback.format_exc())
|
| 392 |
+
return error_msg
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
def generate_trace_caption(image_data, image) -> str:
|
| 396 |
+
"""Generate caption using traces."""
|
| 397 |
+
global loaded_model
|
| 398 |
+
|
| 399 |
+
try:
|
| 400 |
+
# Process traces
|
| 401 |
+
print("[DEBUG] Processing traces...")
|
| 402 |
+
traces = process_image_trace_to_coordinates(image_data)
|
| 403 |
+
print(f"[DEBUG] Found {len(traces)} traces")
|
| 404 |
+
|
| 405 |
+
if not traces:
|
| 406 |
+
# For debugging, let's generate a simple image caption instead of failing
|
| 407 |
+
print("[DEBUG] No traces found, generating image caption instead")
|
| 408 |
+
image_tensor = loaded_model.image_transforms(image).unsqueeze(0).to(device)
|
| 409 |
+
|
| 410 |
+
with torch.no_grad():
|
| 411 |
+
outputs = loaded_model(
|
| 412 |
+
image_tensor,
|
| 413 |
+
get_cls_capt=True, # Get class caption as fallback
|
| 414 |
+
get_patch_capts=False,
|
| 415 |
+
get_avg_patch_capt=False
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
if 'cls_capt' in outputs:
|
| 419 |
+
return f"π No traces drawn. Image caption: {outputs['cls_capt']}"
|
| 420 |
+
else:
|
| 421 |
+
return "β Error: No traces detected. Please draw some traces on the image."
|
| 422 |
+
|
| 423 |
+
print(f"Processing {len(traces)} traces")
|
| 424 |
+
|
| 425 |
+
# Prepare image tensor
|
| 426 |
+
image_tensor = loaded_model.image_transforms(image).unsqueeze(0).to(device)
|
| 427 |
+
|
| 428 |
+
# Generate caption using the model
|
| 429 |
+
with torch.no_grad():
|
| 430 |
+
outputs = loaded_model(
|
| 431 |
+
image_tensor,
|
| 432 |
+
traces=traces,
|
| 433 |
+
get_cls_capt=False, # We want trace captions, not class captions
|
| 434 |
+
get_patch_capts=False,
|
| 435 |
+
get_avg_patch_capt=False
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# Extract the trace captions
|
| 439 |
+
if 'trace_capts' in outputs:
|
| 440 |
+
captions = outputs['trace_capts']
|
| 441 |
+
if isinstance(captions, list) and captions:
|
| 442 |
+
captions = [cap.replace("<|startoftext|>", "").replace("<|endoftext|>", "") for cap in captions]
|
| 443 |
+
# Join multiple captions if there are multiple traces
|
| 444 |
+
if len(captions) == 1:
|
| 445 |
+
return f"Generated Caption: {captions[0]}"
|
| 446 |
+
else:
|
| 447 |
+
formatted_captions = []
|
| 448 |
+
for i, caption in enumerate(captions, 1):
|
| 449 |
+
formatted_captions.append(f"Trace {i}: {caption}")
|
| 450 |
+
return "Generated Captions:\n" + "\n".join(formatted_captions)
|
| 451 |
+
elif isinstance(captions, str):
|
| 452 |
+
return f"Generated Caption: {captions}"
|
| 453 |
+
else:
|
| 454 |
+
return "β Error: No captions generated."
|
| 455 |
+
else:
|
| 456 |
+
return "β Error: Model did not return trace captions."
|
| 457 |
+
|
| 458 |
+
except Exception as e:
|
| 459 |
+
error_msg = f"β Error generating trace caption: {str(e)}"
|
| 460 |
+
print(error_msg)
|
| 461 |
+
print(traceback.format_exc())
|
| 462 |
+
return error_msg
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def generate_bbox_caption(image_data, image) -> str:
|
| 466 |
+
"""Generate caption using bounding boxes."""
|
| 467 |
+
global loaded_model
|
| 468 |
+
|
| 469 |
+
try:
|
| 470 |
+
# Process bounding boxes
|
| 471 |
+
print("[DEBUG] Processing bounding boxes...")
|
| 472 |
+
bboxes = process_bounding_box_coordinates(image_data)
|
| 473 |
+
print(f"[DEBUG] Found {len(bboxes)} bounding boxes")
|
| 474 |
+
|
| 475 |
+
if not bboxes:
|
| 476 |
+
# For debugging, let's generate a simple image caption instead of failing
|
| 477 |
+
print("[DEBUG] No bounding boxes found, generating image caption instead")
|
| 478 |
+
image_tensor = loaded_model.image_transforms(image).unsqueeze(0).to(device)
|
| 479 |
+
|
| 480 |
+
with torch.no_grad():
|
| 481 |
+
outputs = loaded_model(
|
| 482 |
+
image_tensor,
|
| 483 |
+
get_cls_capt=True, # Get class caption as fallback
|
| 484 |
+
get_patch_capts=False,
|
| 485 |
+
get_avg_patch_capt=False
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
if 'cls_capt' in outputs:
|
| 489 |
+
return f"π No bounding boxes drawn. Image caption: {outputs['cls_capt']}"
|
| 490 |
+
else:
|
| 491 |
+
return "β Error: No bounding boxes detected. Please draw some bounding boxes on the image."
|
| 492 |
+
|
| 493 |
+
print(f"Processing {len(bboxes)} bounding boxes")
|
| 494 |
+
|
| 495 |
+
# Generate caption using the caption_bboxes method (as in eval_densecap.py)
|
| 496 |
+
try:
|
| 497 |
+
captions = loaded_model.caption_bboxes([image], [bboxes], crop_boxes=True)
|
| 498 |
+
|
| 499 |
+
if isinstance(captions, list) and captions:
|
| 500 |
+
if isinstance(captions[0], list):
|
| 501 |
+
captions = captions[0] # Unwrap nested list if needed
|
| 502 |
+
captions = [cap.replace("<|startoftext|>", "").replace("<|endoftext|>", "") for cap in captions]
|
| 503 |
+
# Join multiple captions if there are multiple bboxes
|
| 504 |
+
if len(captions) == 1:
|
| 505 |
+
return f"Generated Caption: {captions[0]}"
|
| 506 |
+
else:
|
| 507 |
+
formatted_captions = []
|
| 508 |
+
for i, caption in enumerate(captions, 1):
|
| 509 |
+
formatted_captions.append(f"BBox {i}: {caption}")
|
| 510 |
+
return "Generated Captions:\n" + "\n".join(formatted_captions)
|
| 511 |
+
elif isinstance(captions, str):
|
| 512 |
+
return f"Generated Caption: {captions}"
|
| 513 |
+
else:
|
| 514 |
+
return "β Error: No captions generated."
|
| 515 |
+
|
| 516 |
+
except Exception as e:
|
| 517 |
+
print(f"Error using caption_bboxes method: {e}")
|
| 518 |
+
# Fallback to regular forward method with bboxes
|
| 519 |
+
image_tensor = loaded_model.image_transforms(image).unsqueeze(0).to(device)
|
| 520 |
+
bbox_tensor = torch.tensor([bboxes]).to(device)
|
| 521 |
+
|
| 522 |
+
with torch.no_grad():
|
| 523 |
+
outputs = loaded_model(
|
| 524 |
+
image_tensor,
|
| 525 |
+
bboxes=bbox_tensor,
|
| 526 |
+
get_cls_capt=False,
|
| 527 |
+
get_patch_capts=False,
|
| 528 |
+
get_avg_patch_capt=False
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
if 'bbox_capts' in outputs:
|
| 532 |
+
captions = outputs['bbox_capts']
|
| 533 |
+
if isinstance(captions, list) and captions:
|
| 534 |
+
if isinstance(captions[0], list):
|
| 535 |
+
captions = captions[0] # Unwrap nested list if needed
|
| 536 |
+
captions = [cap.replace("<|startoftext|>", "").replace("<|endoftext|>", "") for cap in captions]
|
| 537 |
+
if len(captions) == 1:
|
| 538 |
+
return f"Generated Caption: {captions[0]}"
|
| 539 |
+
else:
|
| 540 |
+
formatted_captions = []
|
| 541 |
+
for i, caption in enumerate(captions, 1):
|
| 542 |
+
formatted_captions.append(f"BBox {i}: {caption}")
|
| 543 |
+
return "Generated Captions:\n" + "\n".join(formatted_captions)
|
| 544 |
+
elif isinstance(captions, str):
|
| 545 |
+
return f"Generated Caption: {captions}"
|
| 546 |
+
else:
|
| 547 |
+
return "β Error: No captions generated."
|
| 548 |
+
else:
|
| 549 |
+
return "β Error: Model did not return bbox captions."
|
| 550 |
+
|
| 551 |
+
except Exception as e:
|
| 552 |
+
error_msg = f"β Error generating bbox caption: {str(e)}"
|
| 553 |
+
print(error_msg)
|
| 554 |
+
print(traceback.format_exc())
|
| 555 |
+
return error_msg
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
def create_gradio_interface():
|
| 559 |
+
"""Create and configure the Gradio interface."""
|
| 560 |
+
|
| 561 |
+
# Get example files
|
| 562 |
+
example_images = get_example_images()
|
| 563 |
+
example_configs = get_example_configs()
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
custom_js = """
|
| 567 |
+
<script>
|
| 568 |
+
window.addEventListener("load", () => {
|
| 569 |
+
// Hide Crop, Erase, and Color buttons
|
| 570 |
+
const cropBtn = document.querySelector('.image-editor__tool[title="Crop"]');
|
| 571 |
+
const eraseBtn = document.querySelector('.image-editor__tool[title="Erase"]');
|
| 572 |
+
const colorBtn = document.querySelector('.image-editor__tool[title="Color"]');
|
| 573 |
+
|
| 574 |
+
[cropBtn, eraseBtn, colorBtn].forEach(btn => {
|
| 575 |
+
console.log("Going to disable display for ", btn);
|
| 576 |
+
if (btn) btn.style.display = "none";
|
| 577 |
+
});
|
| 578 |
+
|
| 579 |
+
// Optionally, select the Brush/Draft tool right away
|
| 580 |
+
const brushBtn = document.querySelector('.image-editor__tool[title="Draw"]');
|
| 581 |
+
console.log("Selecting brushbtn: ", brushBtn);
|
| 582 |
+
if (brushBtn) brushBtn.click();
|
| 583 |
+
});
|
| 584 |
+
</script>
|
| 585 |
+
"""
|
| 586 |
+
|
| 587 |
+
with gr.Blocks(
|
| 588 |
+
title="Patchioner Trace Captioning Demo",
|
| 589 |
+
theme=gr.themes.Soft(),
|
| 590 |
+
css="""
|
| 591 |
+
.gradio-container {
|
| 592 |
+
max-width: 1200px !important;
|
| 593 |
+
}
|
| 594 |
+
"""
|
| 595 |
+
) as demo:
|
| 596 |
+
#gr.HTML(custom_js) # inject custom JS
|
| 597 |
+
|
| 598 |
+
gr.Markdown("""
|
| 599 |
+
# π― Patchioner Trace Captioning Demo
|
| 600 |
+
|
| 601 |
+
This demo allows you to:
|
| 602 |
+
1. **Select a captioning mode** (trace or bounding box)
|
| 603 |
+
2. **Upload or select an image** from examples
|
| 604 |
+
3. **Draw traces or bounding boxes** on the image
|
| 605 |
+
4. **Generate captions** describing the marked areas
|
| 606 |
+
|
| 607 |
+
## Instructions:
|
| 608 |
+
1. Choose between Trace or BBox mode
|
| 609 |
+
2. Upload an image or use one of the provided examples
|
| 610 |
+
3. Use the appropriate tool to mark areas of interest in the image
|
| 611 |
+
4. Click "Generate Caption" to get AI-generated descriptions
|
| 612 |
+
|
| 613 |
+
**Model:** Using `mlp.karpathy.yaml` configuration (automatically loaded)
|
| 614 |
+
""")
|
| 615 |
+
|
| 616 |
+
# Initialize model status
|
| 617 |
+
model_initialization_status = initialize_default_model()
|
| 618 |
+
|
| 619 |
+
with gr.Row():
|
| 620 |
+
gr.Markdown(f"**Model Status:** {model_initialization_status}")
|
| 621 |
+
|
| 622 |
+
with gr.Row():
|
| 623 |
+
mode_selector = gr.Radio(
|
| 624 |
+
choices=["trace", "bbox"],
|
| 625 |
+
value="trace",
|
| 626 |
+
label="π Captioning Mode",
|
| 627 |
+
info="Choose between trace-based or bounding box-based captioning",
|
| 628 |
+
visible=False
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
with gr.Row():
|
| 632 |
+
with gr.Column():
|
| 633 |
+
gr.Markdown("### πΌοΈ Image Editor")
|
| 634 |
+
|
| 635 |
+
# Image editor for drawing traces (default)
|
| 636 |
+
image_editor = gr.ImageEditor(
|
| 637 |
+
label="Upload image and draw traces",
|
| 638 |
+
type="pil",
|
| 639 |
+
crop_size=None,
|
| 640 |
+
brush=gr.Brush(default_size=3, colors=["red", "blue", "green", "yellow", "purple"]),
|
| 641 |
+
visible=True,
|
| 642 |
+
#tools=["brush"],
|
| 643 |
+
height=600
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
# Image annotator for bounding boxes (hidden by default)
|
| 647 |
+
image_annotator = foo_image_annotator( #gr.Image(
|
| 648 |
+
label="Upload image and draw bounding boxes",
|
| 649 |
+
visible=False,
|
| 650 |
+
#classes=["object"],
|
| 651 |
+
#type="bbox"
|
| 652 |
+
#tool="select"
|
| 653 |
+
)
|
| 654 |
+
|
| 655 |
+
with gr.Column():
|
| 656 |
+
if example_images:
|
| 657 |
+
gr.Markdown("#### π· Or select from example images:")
|
| 658 |
+
example_gallery = gr.Gallery(
|
| 659 |
+
value=example_images,
|
| 660 |
+
label="Example Images",
|
| 661 |
+
show_label=True,
|
| 662 |
+
elem_id="gallery",
|
| 663 |
+
columns=3,
|
| 664 |
+
rows=2,
|
| 665 |
+
object_fit="contain",
|
| 666 |
+
height="auto"
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
with gr.Row():
|
| 670 |
+
generate_button = gr.Button("β¨ Generate Caption", variant="primary", size="lg")
|
| 671 |
+
|
| 672 |
+
with gr.Row():
|
| 673 |
+
output_text = gr.Textbox(
|
| 674 |
+
label="Generated Caption",
|
| 675 |
+
placeholder="Generated caption will appear here...",
|
| 676 |
+
lines=5,
|
| 677 |
+
max_lines=10,
|
| 678 |
+
interactive=False
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
# Event handlers
|
| 682 |
+
def toggle_input_components(mode):
|
| 683 |
+
"""Toggle between image editor and annotator based on mode."""
|
| 684 |
+
if mode == "trace":
|
| 685 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 686 |
+
else: # bbox mode
|
| 687 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 688 |
+
|
| 689 |
+
def load_example_image_to_both(evt: gr.SelectData):
|
| 690 |
+
"""Load selected example image into both components."""
|
| 691 |
+
try:
|
| 692 |
+
example_images = get_example_images()
|
| 693 |
+
if evt.index < len(example_images):
|
| 694 |
+
selected_image_path = example_images[evt.index]
|
| 695 |
+
img = Image.open(selected_image_path)
|
| 696 |
+
# For ImageEditor, return the PIL image directly
|
| 697 |
+
# For image_annotator, return dict format as expected by the component
|
| 698 |
+
annotated_format = {
|
| 699 |
+
"image": img,
|
| 700 |
+
"boxes": [],
|
| 701 |
+
"orientation": 0
|
| 702 |
+
}
|
| 703 |
+
return img, annotated_format
|
| 704 |
+
return None, {"image": None, "boxes": [], "orientation": 0}
|
| 705 |
+
except Exception as e:
|
| 706 |
+
print(f"Error loading example image: {e}")
|
| 707 |
+
return None, {"image": None, "boxes": [], "orientation": 0}
|
| 708 |
+
|
| 709 |
+
def generate_caption_wrapper(mode, image_editor_data, image_annotator_data):
|
| 710 |
+
"""Wrapper to call generate_caption with the appropriate data based on mode."""
|
| 711 |
+
if mode == "trace":
|
| 712 |
+
return generate_caption(mode, image_editor_data)
|
| 713 |
+
else: # bbox mode
|
| 714 |
+
return generate_caption(mode, image_annotator_data)
|
| 715 |
+
|
| 716 |
+
# Connect event handlers
|
| 717 |
+
mode_selector.change(
|
| 718 |
+
fn=toggle_input_components,
|
| 719 |
+
inputs=mode_selector,
|
| 720 |
+
outputs=[image_editor, image_annotator]
|
| 721 |
+
)
|
| 722 |
+
|
| 723 |
+
generate_button.click(
|
| 724 |
+
fn=generate_caption_wrapper,
|
| 725 |
+
inputs=[mode_selector, image_editor, image_annotator],
|
| 726 |
+
outputs=output_text
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
if example_images:
|
| 730 |
+
example_gallery.select(
|
| 731 |
+
fn=load_example_image_to_both,
|
| 732 |
+
outputs=[image_editor, image_annotator]
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
gr.Markdown("""
|
| 736 |
+
### π‘ Tips:
|
| 737 |
+
- **Mode Selection**: Switch between trace and bounding box modes based on your needs
|
| 738 |
+
- **Trace Mode**: Draw continuous lines over areas you want to describe
|
| 739 |
+
- **BBox Mode**: Draw rectangular bounding boxes around objects of interest
|
| 740 |
+
- **Multiple Areas**: Create multiple traces/boxes for different objects to get individual captions
|
| 741 |
+
- **Model Performance**: First load may take some time as weights are downloaded
|
| 742 |
+
|
| 743 |
+
### π§ Technical Details:
|
| 744 |
+
- **Trace Mode**: Converts drawings to normalized (x, y) coordinates with timestamps
|
| 745 |
+
- **BBox Mode**: Uses bounding box coordinates for region-specific captioning
|
| 746 |
+
- **Model Architecture**: Uses `mlp.karpathy.yaml` configuration with CLIP and ViT components
|
| 747 |
+
- **Processing**: Each trace/bbox is processed separately to generate corresponding captions
|
| 748 |
+
""")
|
| 749 |
+
|
| 750 |
+
return demo
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
if __name__ == "__main__":
|
| 754 |
+
import argparse
|
| 755 |
+
|
| 756 |
+
parser = argparse.ArgumentParser(description="Patchioner Trace Captioning Demo")
|
| 757 |
+
parser.add_argument("--port", type=int, default=4141, help="Port to run the Gradio app on")
|
| 758 |
+
args = parser.parse_args()
|
| 759 |
+
|
| 760 |
+
print("Starting Patchioner Trace Captioning Demo...")
|
| 761 |
+
print(f"Using device: {device}")
|
| 762 |
+
print(f"Default model: {DEFAULT_MODEL_CONFIG}")
|
| 763 |
+
print(f"Example images directory: {EXAMPLE_IMAGES_DIR}")
|
| 764 |
+
print(f"Configs directory: {CONFIGS_DIR}")
|
| 765 |
+
|
| 766 |
+
demo = create_gradio_interface()
|
| 767 |
+
demo.launch(
|
| 768 |
+
server_name="0.0.0.0",
|
| 769 |
+
server_port=args.port,
|
| 770 |
+
share=True,
|
| 771 |
+
debug=True
|
| 772 |
+
)
|