HunyuanImage-3 / README.md
Alae65's picture
Update README with API integration instructions for n8n
4ba0b46 verified

A newer version of the Gradio SDK is available: 6.1.0

Upgrade
metadata
title: HunyuanImage-3.0
emoji: 🎨
colorFrom: purple
colorTo: blue
sdk: gradio
sdk_version: 5.44.0
app_file: app.py
pinned: false
short_description: Text-to-Image generation using Tencent HunyuanImage-3.0

🎨 HunyuanImage-3.0 Text-to-Image with Inference API

This Space provides an interface for the Tencent HunyuanImage-3.0 model using Hugging Face Inference API (paid from your account balance).

βœ… What's New

  • Real image generation using HF Inference API
  • n8n integration via REST API endpoint
  • Base64 image output for easy integration
  • Automatic token-based authentication

πŸ”§ Setup Instructions

1. Get Your HF Token

  1. Go to Hugging Face Settings > Access Tokens
  2. Create a new token with write permissions
  3. Copy the token (starts with hf_...)

2. Set Your Token in Space

  1. Go to Settings
  2. Find "Variables and secrets" section
  3. Click "Replace" next to HF_TOKEN
  4. Paste your actual token (replace the placeholder)
  5. Click "Save"

3. Restart the Space

After setting the token, click "Restart space" in Settings.

πŸ“‘ API Endpoint for n8n Integration

Using the Gradio API

The Space provides a REST API that can be called from n8n using the HTTP Request node.

Endpoint URL:

https://alae65-hunyuanimage-3.hf.space/gradio_api/call/api_generate

n8n HTTP Node Configuration

  1. Add an HTTP Request node in n8n
  2. Configure as follows:

Method: POST

URL:

https://alae65-hunyuanimage-3.hf.space/gradio_api/call/api_generate

Body (JSON):

{
  "data": [
    "A serene mountain landscape with a crystal clear lake",
    42,
    50
  ]
}

Parameters:

  • data[0] (string): Your image prompt
  • data[1] (integer): Seed number (for reproducibility)
  • data[2] (integer): Number of inference steps (10-100)

Response Format: The API returns a JSON with:

{
  "success": true,
  "image_base64": "iVBORw0KGgoAAAANSUhEUg...",
  "seed": 42,
  "status": "Success!",
  "prompt": "A serene mountain landscape..."
}

Example n8n Workflow

  1. Trigger β†’ Webhook or Schedule
  2. HTTP Request β†’ Call HunyuanImage API
  3. Code β†’ Decode base64 image if needed
  4. Save or Send β†’ Store image or send via email/Slack

Python Example

import requests
import base64
from PIL import Image
from io import BytesIO

url = "https://alae65-hunyuanimage-3.hf.space/gradio_api/call/api_generate"

payload = {
    "data": [
        "A beautiful sunset over the ocean",
        42,
        50
    ]
}

response = requests.post(url, json=payload)
result = response.json()

if result.get("success"):
    # Decode base64 image
    image_data = base64.b64decode(result["image_base64"])
    image = Image.open(BytesIO(image_data))
    image.save("output.png")
    print("Image saved successfully!")

🎯 Features

  • 🎯 Advanced prompt understanding
  • πŸ–ΌοΈ Multiple resolution support
  • 🎲 Seed control for reproducibility
  • βš™οΈ Configurable diffusion steps (10-100)
  • πŸ“ Example prompts included
  • πŸ”Œ REST API for n8n and automation
  • πŸ“¦ Base64 image encoding

πŸ’° Pricing

This Space uses the Hugging Face Inference API which is billed based on usage:

  • Cost is deducted from your HF account balance
  • You mentioned having $9 credit available
  • Check Billing Settings for details

πŸ“š Model Information

πŸ”— Links

πŸ“ Citation

@article{cao2025hunyuanimage,
  title={HunyuanImage 3.0 Technical Report},
  author={Cao, Siyu and Chen, Hangting and others},
  journal={arXiv preprint arXiv:2509.23951},
  year={2025}
}