DistillFSS
Collection
Efficient Adaption for CD-FSS through Knowledge Distillation
•
2 items
•
Updated
DistillFSS-DCAMA is a distilled version of the DCAMA model for a specific downstream segmentation task. The DistillFSS framework allows to distill large few-shot segmentation models into smaller and more efficient ones, while improving or maintaining their performance on the target task.
How to use this model: Clone the repository:
git clone https://github.com/pasqualedem/DistillFSS.git
Install the required dependencies as specified in the repository.
Load the model using the following code snippet:
from distillfss.models.dcama.distillator import DistilledDCAMA
model = DistilledDCAMA.from_pretrained("pasqualedem/DistillFSS_WeedMap_DCAMA_5shot")
YAML configuration:
dataloader:
num_workers: 0
dataset:
datasets:
test_weedmap:
prompt_images: 5
test_root: data/weedmap/0_rotations_processed_003_test/RedEdge/003
train_root: data/weedmap/0_rotations_processed_003_test/RedEdge/000
preprocess:
image_size: 384
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
model:
name: distillator
params:
student:
name: conv_distillator
num_classes: 2
teacher:
backbone: swin
backbone_checkpoint: checkpoints/swin_base_patch4_window12_384.pth
concat_support: false
image_size: 384
model_checkpoint: checkpoints/swin_fold0_pascal_modcross_soft.pt
name: dcama
push_to_hub:
repo_name: pasqualedem/DistillFSS_WeedMap_DCAMA_5shot
refinement:
hot_parameters:
- model.conv1
- model.conv2
- model.conv3
- model.mixer1
- model.mixer2
- model.mixer3
- student
iterations_is_num_classes: false
loss:
name: refine_distill
lr: 0.001
max_iterations: 500
subsample: 1
substitutor: paired
test:
prompt_to_use: null
tracker:
cache_dir: tmp
group: WeedMap
log_frequency: 1
project: FSSWeed
tags:
- WeedMap
- Distill
test_image_log_frequency: 10
tmp_dir: tmp
train_image_log_frequency: 25