multilingual-whisper-v3-turbo
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2427
- Wer: 0.1501
- Cer: 0.0510
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|---|---|---|---|---|---|
| 0.4108 | 0.1 | 1000 | 0.5753 | 0.3702 | 0.1237 |
| 0.2326 | 0.2 | 2000 | 0.4653 | 0.2888 | 0.0881 |
| 0.4429 | 0.3 | 3000 | 0.3750 | 0.2354 | 0.0782 |
| 0.3309 | 0.4 | 4000 | 0.3388 | 0.2075 | 0.0674 |
| 0.3298 | 0.5 | 5000 | 0.3135 | 0.1952 | 0.0635 |
| 0.3238 | 0.6 | 6000 | 0.2929 | 0.1782 | 0.0592 |
| 0.3926 | 0.7 | 7000 | 0.2766 | 0.1688 | 0.0545 |
| 0.2261 | 0.8 | 8000 | 0.2627 | 0.1593 | 0.0519 |
| 0.2197 | 0.9 | 9000 | 0.2514 | 0.1573 | 0.0506 |
| 0.2276 | 1.0001 | 10000 | 0.2427 | 0.1501 | 0.0510 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 238
Model tree for dsfsi-anv/multilingual-whisper-v3-turbo
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo