Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
episode_index: int64
length: int64
tasks: list<item: string>
vs
codebase_version: string
robot_type: string
total_episodes: int64
total_frames: int64
total_tasks: int64
total_chunks: int64
chunks_size: int64
fps: int64
features: struct<observation.state: struct<dtype: string, shape: list<item: int64>, _info: struct<names: list<item: string>>>, action: struct<dtype: string, shape: list<item: int64>, _info: struct<names: list<item: string>>>, episode_index: struct<dtype: string, shape: list<item: null>>, frame_index: struct<dtype: string, shape: list<item: null>>, timestamp: struct<dtype: string, shape: list<item: null>>, next.done: struct<dtype: string, shape: list<item: null>>, next.reward: struct<dtype: string, shape: list<item: null>>, next.success: struct<dtype: string, shape: list<item: null>>, index: struct<dtype: string, shape: list<item: null>>, task_index: struct<dtype: string, shape: list<item: null>>, observation.images.top: struct<dtype: string, shape: list<item: int64>, _info: struct<video_path: string>>, observation.images.wrist: struct<dtype: string, shape: list<item: int64>, _info: struct<video_path: string>>>
encoding: struct<video: struct<codec: string, pix_fmt: string, g: int64, crf: int64>>
video_info: struct<video.fps: int64, video.codec: string, video.pix_fmt: string, video.preset: string>
data_path: string
video_path: string
camera_keys: list<item: string>
camera_names: list<item: string>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3357, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2111, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2315, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1878, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 536, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              episode_index: int64
              length: int64
              tasks: list<item: string>
              vs
              codebase_version: string
              robot_type: string
              total_episodes: int64
              total_frames: int64
              total_tasks: int64
              total_chunks: int64
              chunks_size: int64
              fps: int64
              features: struct<observation.state: struct<dtype: string, shape: list<item: int64>, _info: struct<names: list<item: string>>>, action: struct<dtype: string, shape: list<item: int64>, _info: struct<names: list<item: string>>>, episode_index: struct<dtype: string, shape: list<item: null>>, frame_index: struct<dtype: string, shape: list<item: null>>, timestamp: struct<dtype: string, shape: list<item: null>>, next.done: struct<dtype: string, shape: list<item: null>>, next.reward: struct<dtype: string, shape: list<item: null>>, next.success: struct<dtype: string, shape: list<item: null>>, index: struct<dtype: string, shape: list<item: null>>, task_index: struct<dtype: string, shape: list<item: null>>, observation.images.top: struct<dtype: string, shape: list<item: int64>, _info: struct<video_path: string>>, observation.images.wrist: struct<dtype: string, shape: list<item: int64>, _info: struct<video_path: string>>>
              encoding: struct<video: struct<codec: string, pix_fmt: string, g: int64, crf: int64>>
              video_info: struct<video.fps: int64, video.codec: string, video.pix_fmt: string, video.preset: string>
              data_path: string
              video_path: string
              camera_keys: list<item: string>
              camera_names: list<item: string>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Ketchup Pick and Place Dataset

This dataset contains robot demonstrations for a pick and place task using a Universal Robots UR5e.

Dataset Statistics

  • Total Episodes: 1
  • Total Frames: 154
  • FPS: 10
  • Robot DOF: 7 (6DOF pose + gripper)
  • Cameras: ['top', 'wrist']

Task Description

Pick and place manipulation task where the robot grasps a ketchup bottle and places it in a different location.

Data Format

This dataset follows the LeRobot format with:

  • Robot states in observation.state (7DOF: x, y, z, roll, pitch, yaw, gripper)
  • Actions as next robot states
  • Video recordings from multiple camera angles
  • Videos encoded with H.264 codec using FFmpeg for maximum compatibility

Camera Setup

  • top: RGB camera feed
  • wrist: RGB camera feed

Usage

from lerobot.common.datasets.lerobot_dataset import LeRobotDataset

# Load dataset
dataset = LeRobotDataset("sakehaosdfadfasf/ketchup_pick_place")

# Visualize data
python -m lerobot.scripts.visualize_dataset \
    --repo-id sakehaosdfadfasf/ketchup_pick_place \
    --episode-index 0

Video Format

Videos are encoded using FFmpeg with H.264 codec, YUV420P pixel format, and CRF 18 for high quality. This ensures maximum compatibility with LeRobot's video decoding pipeline.

Downloads last month
15