Datasets:
Egocentric-100K is the largest egocentric dataset by an order of magnitude. You can visualize the dataset here.
Egocentric-100K is state-of-the-art in hand visibility and active manipulation density compared to previous in-the-wild egocentric datasets. The complete 30,000 frame evaluation set is available at Egocentric-100K-Evaluation.
Dataset Statistics
| Attribute | Value |
|---|---|
| Total Hours | 100,405 |
| Total Frames | 10.8 billion |
| Video Clips | 2,010,759 |
| Median Clip Length | 180.0 seconds |
| Workers | 14,228 |
| Mean Hours per Worker | 7.06 |
| Storage Size | 24.79 TB |
| Format | H.265/MP4 |
| Resolution | 256p (456x256) |
| Frame Rate | 30 fps |
| Camera Type | Monocular head-mounted fisheye |
| Audio | No |
| Device | Build AI Gen 1 |
Camera Intrinsics
Each worker folder contains an intrinsics.json file with calibrated camera parameters for that worker's device.
The intrinsics use the OpenCV fisheye model (Kannala-Brandt equidistant projection) with 4 distortion coefficients (k1-k4). All values are scaled appropriately for the 456x256 resolution.
Example intrinsics.json:
{
"model": "fisheye",
"image_width": 456,
"image_height": 256,
"fx": 137.98,
"fy": 138.23,
"cx": 232.17,
"cy": 125.37,
"k1": 0.3948,
"k2": 0.1798,
"k3": -0.2753,
"k4": 0.0793
}
Dataset Structure
Egocentric-100K is structured in WebDataset format:
builddotai/Egocentric-100K/
βββ factory001/
β βββ worker001/
β β βββ intrinsics.json # Camera intrinsics for this worker
β β βββ part000.tar # Shard 0 (β€1GB)
β β βββ part001.tar # Shard 1 (if needed)
β βββ worker002/
β β βββ intrinsics.json
β β βββ part000.tar
β βββ ...
β
βββ factory002/
β βββ worker001/
β β βββ intrinsics.json
β β βββ part000.tar
β βββ ...
β
βββ ... (85 factories, 14,228 workers)
Each TAR file contains pairs of video and metadata files:
part000.tar
βββ factory001_worker001_00001.mp4 # Video 1
βββ factory001_worker001_00001.json # Metadata for video 1
βββ factory001_worker001_00002.mp4 # Video 2
βββ factory001_worker001_00002.json # Metadata for video 2
βββ ... # Additional video/metadata pairs
Each JSON metadata file has the following fields:
{
"factory_id": "factory_002",
"worker_id": "worker_002",
"video_index": 0,
"duration_sec": 1200.0,
"width": 456,
"height": 256,
"fps": 30.0,
"size_bytes": 599697350,
"codec": "h265"
}
Loading the Dataset
from datasets import load_dataset, Features, Value
# Define features
features = Features({
'mp4': Value('binary'),
'json': {
'factory_id': Value('string'),
'worker_id': Value('string'),
'video_index': Value('int64'),
'duration_sec': Value('float64'),
'width': Value('int64'),
'height': Value('int64'),
'fps': Value('float64'),
'size_bytes': Value('int64'),
'codec': Value('string')
},
'__key__': Value('string'),
'__url__': Value('string')
})
# Load entire dataset
dataset = load_dataset(
"builddotai/Egocentric-100K",
streaming=True,
features=features
)
# Load specific factories
dataset = load_dataset(
"builddotai/Egocentric-100K",
data_files=["factory001/**/*.tar", "factory002/**/*.tar"],
streaming=True,
features=features
)
# Load specific workers
dataset = load_dataset(
"builddotai/Egocentric-100K",
data_files=[
"factory001/worker001/*.tar",
"factory001/worker002/*.tar"
],
streaming=True,
features=features
)
Loading Intrinsics
from huggingface_hub import hf_hub_download
import json
# Download intrinsics for a specific worker
intrinsics_path = hf_hub_download(
repo_id="builddotai/Egocentric-100K",
filename="factory001/worker001/intrinsics.json",
repo_type="dataset"
)
with open(intrinsics_path) as f:
intrinsics = json.load(f)
License
Licensed under the Apache 2.0 License.
Citation
@dataset{buildaiegocentric100k2025,
author = {Build AI},
title = {Egocentric-100k},
year = {2025},
publisher = {Hugging Face Datasets},
url = {https://huggingface.co/datasets/builddotai/Egocentric-100K}
}
- Downloads last month
- 683


