|
|
--- |
|
|
language: |
|
|
- en |
|
|
size_categories: |
|
|
- 10K<n<100K |
|
|
ArXiv: |
|
|
- https://arxiv.org/abs/2504.11218 |
|
|
--- |
|
|
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
|
|
|
|
In this repository, we present 3DAffordSplat, the first large-scale, multi-modal dataset tailored for 3DGS-based affordance reasoning. This dataset includes 23k Gaussian instances, 8k point cloud instances, and 6k manually annotated affordance labels, encompassing 21 object categories and 18 affordance types. |
|
|
|
|
|
# Dataset Structure |
|
|
|
|
|
After downloading, the data structure should be as follows: |
|
|
``` |
|
|
—Seen |
|
|
├── train |
|
|
│ ├── bag |
|
|
│ │ ├── Gaussian |
|
|
│ │ │ └── GS_0017.ply |
|
|
│ │ │ ...... |
|
|
│ │ ├── PointCloud |
|
|
│ │ │ └── PC_0001.ply |
|
|
│ │ │ ...... |
|
|
│ │ ├── contain |
|
|
│ │ │ ├── GS_anno_0017.ply |
|
|
│ │ │ ├── PC_anno_0001.json |
|
|
│ │ │ ...... |
|
|
│ │ └── grasp |
|
|
│ │ ...... |
|
|
│ └── bed |
|
|
│ ...... |
|
|
│ |
|
|
├── val |
|
|
│ ├── bag |
|
|
│ │ ├── Gaussian |
|
|
│ │ │ └── GS_0009.ply |
|
|
│ │ │ ...... |
|
|
│ │ ├── contain |
|
|
│ │ │ └── GS_anno_0009.ply |
|
|
│ │ │ ...... |
|
|
│ │ └── grasp |
|
|
│ │ ...... |
|
|
│ └── bed |
|
|
│ ...... |
|
|
│ |
|
|
└── test |
|
|
├── bag |
|
|
│ ├── Gaussian |
|
|
│ │ └── GS_0001.ply |
|
|
│ │ ...... |
|
|
│ ├── contain |
|
|
│ │ └── GS_anno_0001.ply |
|
|
│ │ ...... |
|
|
│ └── grasp |
|
|
│ ...... |
|
|
└── bed |
|
|
...... |
|
|
|
|
|
—Affordance-Question.csv |
|
|
—obj_aff_structure.json |
|
|
—UnSeen_test.json |
|
|
—UnSeen_train.json |
|
|
``` |
|
|
|
|
|
# Dataset Details |
|
|
For more information on detailed statistics and the methodology of AffordSplat, please refer to the following resources: |
|
|
- **Repository:** [Github Repository](https://github.com/HCPLab-SYSU/3DAffordSplat) |
|
|
- **Paper:** [3DAffordSplat: Efficient Affordance Reasoning with 3D Gaussians](https://arxiv.org/abs/2504.11218) |
|
|
<!-- - **Demo [optional]:** [More Information Needed] --> |
|
|
|
|
|
Additionally, we sincerely thank Guantian Liu, Yao Xiao, Xinyu Li, Kecheng Liang and Yipeng Ouyang for their contributions. |
|
|
|
|
|
# Contact |
|
|
This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact (weizm6@mail2.sysu.edu.cn, linjy279@mail2.sysu.edu.cn or liuy856@mail.sysu.edu.cn). |
|
|
|
|
|
# Citation |
|
|
If you use this data, please cite our paper. |
|
|
``` |
|
|
@misc{wei20253daffordsplatefficientaffordancereasoning, |
|
|
title={3DAffordSplat: Efficient Affordance Reasoning with 3D Gaussians}, |
|
|
author={Zeming wei and Junyi Lin and Yang Liu and Weixing Chen and Jingzhou Luo and Guanbin Li and Liang Lin}, |
|
|
year={2025}, |
|
|
eprint={2504.11218}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CV}, |
|
|
url={https://arxiv.org/abs/2504.11218}, |
|
|
} |
|
|
``` |
|
|
|
|
|
|
|
|
# Acknowledgement |
|
|
The construction of AffordSplat dataset is based on [3DAffordanceNet](https://github.com/Gorilla-Lab-SCUT/AffordanceNet), [LASO](https://github.com/yl3800/laso) and [ShapeSplat](https://huggingface.co/datasets/ShapeSplats/ModelNet_Splats). We sincerely thank them for their contributions to the community. |
|
|
|