AffordSplat / README.md
Weizm's picture
Update README.md
6bc6c76 verified
---
language:
- en
size_categories:
- 10K<n<100K
ArXiv:
- https://arxiv.org/abs/2504.11218
---
<!-- Provide a quick summary of the dataset. -->
In this repository, we present 3DAffordSplat, the first large-scale, multi-modal dataset tailored for 3DGS-based affordance reasoning. This dataset includes 23k Gaussian instances, 8k point cloud instances, and 6k manually annotated affordance labels, encompassing 21 object categories and 18 affordance types.
# Dataset Structure
After downloading, the data structure should be as follows:
```
—Seen
├── train
│ ├── bag
│ │ ├── Gaussian
│ │ │ └── GS_0017.ply
│ │ │ ......
│ │ ├── PointCloud
│ │ │ └── PC_0001.ply
│ │ │ ......
│ │ ├── contain
│ │ │ ├── GS_anno_0017.ply
│ │ │ ├── PC_anno_0001.json
│ │ │ ......
│ │ └── grasp
│ │ ......
│ └── bed
│ ......
├── val
│ ├── bag
│ │ ├── Gaussian
│ │ │ └── GS_0009.ply
│ │ │ ......
│ │ ├── contain
│ │ │ └── GS_anno_0009.ply
│ │ │ ......
│ │ └── grasp
│ │ ......
│ └── bed
│ ......
└── test
├── bag
│ ├── Gaussian
│ │ └── GS_0001.ply
│ │ ......
│ ├── contain
│ │ └── GS_anno_0001.ply
│ │ ......
│ └── grasp
│ ......
└── bed
......
—Affordance-Question.csv
—obj_aff_structure.json
—UnSeen_test.json
—UnSeen_train.json
```
# Dataset Details
For more information on detailed statistics and the methodology of AffordSplat, please refer to the following resources:
- **Repository:** [Github Repository](https://github.com/HCPLab-SYSU/3DAffordSplat)
- **Paper:** [3DAffordSplat: Efficient Affordance Reasoning with 3D Gaussians](https://arxiv.org/abs/2504.11218)
<!-- - **Demo [optional]:** [More Information Needed] -->
Additionally, we sincerely thank Guantian Liu, Yao Xiao, Xinyu Li, Kecheng Liang and Yipeng Ouyang for their contributions.
# Contact
This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact (weizm6@mail2.sysu.edu.cn, linjy279@mail2.sysu.edu.cn or liuy856@mail.sysu.edu.cn).
# Citation
If you use this data, please cite our paper.
```
@misc{wei20253daffordsplatefficientaffordancereasoning,
title={3DAffordSplat: Efficient Affordance Reasoning with 3D Gaussians},
author={Zeming wei and Junyi Lin and Yang Liu and Weixing Chen and Jingzhou Luo and Guanbin Li and Liang Lin},
year={2025},
eprint={2504.11218},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.11218},
}
```
# Acknowledgement
The construction of AffordSplat dataset is based on [3DAffordanceNet](https://github.com/Gorilla-Lab-SCUT/AffordanceNet), [LASO](https://github.com/yl3800/laso) and [ShapeSplat](https://huggingface.co/datasets/ShapeSplats/ModelNet_Splats). We sincerely thank them for their contributions to the community.