Datasets:
πΎ Bangladesh Multi-Crop Disease Classification Dataset
π Dataset Description
This comprehensive dataset contains 123,588 images across 94 disease classes from 13 different crops commonly cultivated in the Bangladeshi agricultural region. The dataset is specifically curated to address plant disease identification challenges in South Asian agriculture, with a focus on crops that are economically and nutritionally significant to Bangladesh and the broader region.
The dataset combines multiple high-quality sources to create a unified, large-scale resource for computer vision research in agricultural disease detection, particularly tailored for Bangladeshi and South Asian farming contexts.
π Regional Context
This dataset is particularly relevant for Bangladesh and surrounding South Asian regions because:
- Climate Compatibility: All included crops thrive in Bangladesh's tropical and subtropical climate
- Economic Importance: These crops represent major agricultural products in Bangladesh's economy
- Food Security: Many of these crops are staples in Bangladeshi cuisine and nutrition
- Agricultural Challenges: The diseases included are commonly encountered by Bangladeshi farmers
- Research Gap: Addresses the need for region-specific agricultural AI solutions
π Dataset Statistics
| Split | Images | Percentage |
|---|---|---|
| Train | 86,467 | 70% |
| Valid | 24,698 | 20% |
| Test | 12,423 | 10% |
| Total | 123,588 | 100% |
π± Crops and Classes (94 Total)
π Banana (9 classes)
- Banana_Black_Pitting_or_Banana_Rust
- Banana_Crown_Rot
- Banana_Healthy
- Banana_fungal_disease
- Banana_leaf_Banana_Scab_Moth
- Banana_leaf_Black_Sigatoka
- Banana_leaf_Healthy
- Banana_leaf__Black_Leaf_Streak
- Banana_leaf__Panama_Disease
π₯¬ Cauliflower (4 classes)
- Cauliflower_Bacterial_spot_rot
- Cauliflower_Black_Rot
- Cauliflower_Downy_Mildew
- Cauliflower_Healthy
π½ Corn (4 classes)
- Corn_Blight
- Corn_Common_Rust
- Corn_Gray_Leaf_Spot
- Corn_Healthy
πΏ Cotton (4 classes)
- Cotton_Aphids
- Cotton_Army worm
- Cotton_Bacterial blight
- Cotton_Healthy
π₯ Guava (9 classes)
- Guava_fruit_Anthracnose
- Guava_fruit_Healthy
- Guava_fruit_Scab
- Guava_fruit_Styler_end_root
- Guava_leaf_Anthracnose
- Guava_leaf_Canker
- Guava_leaf_Dot
- Guava_leaf_Healthy
- Guava_leaf_Rust
πΎ Jute (3 classes)
- Jute_Cescospora Leaf Spot
- Jute_Golden Mosaic
- Jute_Healthy Leaf
π₯ Mango (8 classes)
- Mango_Anthracnose
- Mango_Bacterial_Canker
- Mango_Cutting_Weevil
- Mango_Gall_Midge
- Mango_Healthy
- Mango_Powdery_Mildew
- Mango_Sooty_Mould
- Mango_die_back
π§‘ Papaya (8 classes)
- Papaya_Anthracnose
- Papaya_BacterialSpot
- Papaya_Curl
- Papaya_Healthy
- Papaya_Mealybug
- Papaya_Mite_disease
- Papaya_Mosaic
- Papaya_Ringspot
π₯ Potato (10 classes)
- Potato_Black_Scurf
- Potato_Blackleg
- Potato_Blackspot_Bruising
- Potato_Brown_Rot
- Potato_Common_Scab
- Potato_Dry_Rot
- Potato_Healthy_Potatoes
- Potato_Miscellaneous
- Potato_Pink_Rot
- Potato_Soft_Rot
π Rice (10 classes)
- Rice_Blast
- Rice_Brownspot
- Rice_Tungro
- Rice_bacterial_leaf_blight
- Rice_bacterial_leaf_streak
- Rice_bacterial_panicle_blight
- Rice_dead_heart
- Rice_downy_mildew
- Rice_hispa
- Rice_normal
π Sugarcane (5 classes)
- Sugarcane_Healthy
- Sugarcane_Mosaic
- Sugarcane_RedRot
- Sugarcane_Rust
- Sugarcane_Yellow
π΅ Tea (8 classes)
- Tea_Anthracnose
- Tea_algal_leaf
- Tea_bird_eye_spot
- Tea_brown_blight
- Tea_gray_light
- Tea_healthy
- Tea_red_leaf_spot
- Tea_white_spot
π Tomato (9 classes)
- Tomato_Bacterial_Spot
- Tomato_Early_Blight
- Tomato_Late_Blight
- Tomato_Leaf_Mold
- Tomato_Septoria_Leaf_Spot
- Tomato_Spider_Mites_Two-spotted_Spider_Mite
- Tomato_Target_Spot
- Tomato_Tomato_Yellow_Leaf_Curl_Virus
- Tomato_healthy
πΎ Wheat (3 classes)
- Wheat_Healthy
- Wheat_septoria
- Wheat_stripe_rust
π Data Sources
This dataset is compiled from the following high-quality sources:
HuggingFace Datasets
- Corn, Cotton, Jute, Rice, Sugarcane, Wheat: Indian Crop Diseases Dataset
- Rice (Additional): Paddy Disease Classification
- Tea: Tea Sickness Dataset
- Tomato: Tomato Leaf Disease Images
Mendeley Data Repository
- Banana: Banana Disease Dataset
- Potato: Potato Disease Dataset
- Cauliflower: Cauliflower Disease Dataset
- Guava: Guava Disease Dataset
- Mango: Mango Disease Dataset
- Papaya: Papaya Disease Dataset
π» Usage
Loading the Dataset
from datasets import load_dataset
# Load the complete dataset
dataset = load_dataset("Saon110/bd-crop-veg-plant-disease-dataset")
# Access individual splits
train_dataset = dataset["train"]
valid_dataset = dataset["valid"]
test_dataset = dataset["test"]
# Print dataset info
print(f"Total classes: {len(train_dataset.features['label'].names)}")
print(f"Train samples: {len(train_dataset)}")
print(f"Valid samples: {len(valid_dataset)}")
print(f"Test samples: {len(test_dataset)}")
Example Usage for Model Training
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from PIL import Image
# Define transforms
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Process dataset
def preprocess_data(examples):
images = [transform(img.convert('RGB')) for img in examples['image']]
return {'pixel_values': images, 'labels': examples['label']}
# Apply preprocessing
train_dataset = train_dataset.with_transform(preprocess_data)
# Create DataLoader
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# Example training loop
for batch in train_loader:
images = torch.stack(batch['pixel_values'])
labels = torch.tensor(batch['labels'])
# Your training code here
break
Class Label Access
# Get all class names
class_names = train_dataset.features['label'].names
# Print some examples
for i, example in enumerate(train_dataset.take(5)):
image = example['image']
label_idx = example['label']
label_name = example['label_name']
print(f"Sample {i}: {label_name} (class {label_idx})")
π― Applications
This dataset is ideal for:
- Agricultural Disease Detection: Build AI models for early disease identification
- Precision Agriculture: Develop tools for Bangladeshi farmers
- Computer Vision Research: Multi-class image classification studies
- Transfer Learning: Pre-training for region-specific agricultural models
- Mobile Applications: Create farmer-friendly disease detection apps
- Agricultural Extension Services: Support digital agriculture initiatives in Bangladesh
π Potential Research Areas
- Region-Specific Disease Patterns: Study disease prevalence in South Asian agriculture
- Multi-Crop Classification: Develop unified models across different crop types
- Few-Shot Learning: Address classes with limited samples (e.g., Tea diseases)
- Domain Adaptation: Transfer knowledge between different crop diseases
- Explainable AI: Understanding model decisions for agricultural applications
π Dataset Structure
bd-crop-veg-plant-disease-dataset/
βββ train/
β βββ Banana_Black_Pitting_or_Banana_Rust/
β βββ Banana_Crown_Rot/
β βββ ...
β βββ Wheat_stripe_rust/
βββ valid/
β βββ Banana_Black_Pitting_or_Banana_Rust/
β βββ Banana_Crown_Rot/
β βββ ...
β βββ Wheat_stripe_rust/
βββ test/
βββ Banana_Black_Pitting_or_Banana_Rust/
βββ Banana_Crown_Rot/
βββ ...
βββ Wheat_stripe_rust/
βοΈ License
This dataset is licensed under CC BY-NC-SA 4.0. For commercial use, please contact: [email protected]
π Citation
If you use this dataset in your research, please cite:
@dataset{saon110_bd_crop_disease_2025,
title={Bangladesh Multi-Crop Disease Classification Dataset},
author={Sijon Chisty Saon},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/Saon110/bd-crop-vegetable-plant-disease-dataset}
}
π€ Contributing
Contributions to improve and expand this dataset are welcome! Please feel free to:
- Report issues or inconsistencies
- Suggest additional crops relevant to Bangladesh
- Contribute new disease categories
- Improve data quality
π Contact
For questions, suggestions, or collaborations related to this dataset, please create an issue in the dataset repository or feel free to mail me : [email protected]
Keywords: Bangladesh, Agriculture, Plant Disease, Computer Vision, Deep Learning, Crop Classification, South Asia, Farming, AI, Machine Learning
- Downloads last month
- 32