You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

🌾 Bangladesh Multi-Crop Disease Classification Dataset

License: CC BY-NC-SA 4.0 Dataset

πŸ“– Dataset Description

This comprehensive dataset contains 123,588 images across 94 disease classes from 13 different crops commonly cultivated in the Bangladeshi agricultural region. The dataset is specifically curated to address plant disease identification challenges in South Asian agriculture, with a focus on crops that are economically and nutritionally significant to Bangladesh and the broader region.

The dataset combines multiple high-quality sources to create a unified, large-scale resource for computer vision research in agricultural disease detection, particularly tailored for Bangladeshi and South Asian farming contexts.

🌍 Regional Context

This dataset is particularly relevant for Bangladesh and surrounding South Asian regions because:

  • Climate Compatibility: All included crops thrive in Bangladesh's tropical and subtropical climate
  • Economic Importance: These crops represent major agricultural products in Bangladesh's economy
  • Food Security: Many of these crops are staples in Bangladeshi cuisine and nutrition
  • Agricultural Challenges: The diseases included are commonly encountered by Bangladeshi farmers
  • Research Gap: Addresses the need for region-specific agricultural AI solutions

πŸ“Š Dataset Statistics

Split Images Percentage
Train 86,467 70%
Valid 24,698 20%
Test 12,423 10%
Total 123,588 100%

🌱 Crops and Classes (94 Total)

🍌 Banana (9 classes)

  • Banana_Black_Pitting_or_Banana_Rust
  • Banana_Crown_Rot
  • Banana_Healthy
  • Banana_fungal_disease
  • Banana_leaf_Banana_Scab_Moth
  • Banana_leaf_Black_Sigatoka
  • Banana_leaf_Healthy
  • Banana_leaf__Black_Leaf_Streak
  • Banana_leaf__Panama_Disease

πŸ₯¬ Cauliflower (4 classes)

  • Cauliflower_Bacterial_spot_rot
  • Cauliflower_Black_Rot
  • Cauliflower_Downy_Mildew
  • Cauliflower_Healthy

🌽 Corn (4 classes)

  • Corn_Blight
  • Corn_Common_Rust
  • Corn_Gray_Leaf_Spot
  • Corn_Healthy

🌿 Cotton (4 classes)

  • Cotton_Aphids
  • Cotton_Army worm
  • Cotton_Bacterial blight
  • Cotton_Healthy

πŸ₯­ Guava (9 classes)

  • Guava_fruit_Anthracnose
  • Guava_fruit_Healthy
  • Guava_fruit_Scab
  • Guava_fruit_Styler_end_root
  • Guava_leaf_Anthracnose
  • Guava_leaf_Canker
  • Guava_leaf_Dot
  • Guava_leaf_Healthy
  • Guava_leaf_Rust

🌾 Jute (3 classes)

  • Jute_Cescospora Leaf Spot
  • Jute_Golden Mosaic
  • Jute_Healthy Leaf

πŸ₯­ Mango (8 classes)

  • Mango_Anthracnose
  • Mango_Bacterial_Canker
  • Mango_Cutting_Weevil
  • Mango_Gall_Midge
  • Mango_Healthy
  • Mango_Powdery_Mildew
  • Mango_Sooty_Mould
  • Mango_die_back

🧑 Papaya (8 classes)

  • Papaya_Anthracnose
  • Papaya_BacterialSpot
  • Papaya_Curl
  • Papaya_Healthy
  • Papaya_Mealybug
  • Papaya_Mite_disease
  • Papaya_Mosaic
  • Papaya_Ringspot

πŸ₯” Potato (10 classes)

  • Potato_Black_Scurf
  • Potato_Blackleg
  • Potato_Blackspot_Bruising
  • Potato_Brown_Rot
  • Potato_Common_Scab
  • Potato_Dry_Rot
  • Potato_Healthy_Potatoes
  • Potato_Miscellaneous
  • Potato_Pink_Rot
  • Potato_Soft_Rot

🍚 Rice (10 classes)

  • Rice_Blast
  • Rice_Brownspot
  • Rice_Tungro
  • Rice_bacterial_leaf_blight
  • Rice_bacterial_leaf_streak
  • Rice_bacterial_panicle_blight
  • Rice_dead_heart
  • Rice_downy_mildew
  • Rice_hispa
  • Rice_normal

πŸŽ‹ Sugarcane (5 classes)

  • Sugarcane_Healthy
  • Sugarcane_Mosaic
  • Sugarcane_RedRot
  • Sugarcane_Rust
  • Sugarcane_Yellow

🍡 Tea (8 classes)

  • Tea_Anthracnose
  • Tea_algal_leaf
  • Tea_bird_eye_spot
  • Tea_brown_blight
  • Tea_gray_light
  • Tea_healthy
  • Tea_red_leaf_spot
  • Tea_white_spot

πŸ… Tomato (9 classes)

  • Tomato_Bacterial_Spot
  • Tomato_Early_Blight
  • Tomato_Late_Blight
  • Tomato_Leaf_Mold
  • Tomato_Septoria_Leaf_Spot
  • Tomato_Spider_Mites_Two-spotted_Spider_Mite
  • Tomato_Target_Spot
  • Tomato_Tomato_Yellow_Leaf_Curl_Virus
  • Tomato_healthy

🌾 Wheat (3 classes)

  • Wheat_Healthy
  • Wheat_septoria
  • Wheat_stripe_rust

πŸ”— Data Sources

This dataset is compiled from the following high-quality sources:

HuggingFace Datasets

Mendeley Data Repository

πŸ’» Usage

Loading the Dataset

from datasets import load_dataset

# Load the complete dataset
dataset = load_dataset("Saon110/bd-crop-veg-plant-disease-dataset")

# Access individual splits
train_dataset = dataset["train"]
valid_dataset = dataset["valid"] 
test_dataset = dataset["test"]

# Print dataset info
print(f"Total classes: {len(train_dataset.features['label'].names)}")
print(f"Train samples: {len(train_dataset)}")
print(f"Valid samples: {len(valid_dataset)}")
print(f"Test samples: {len(test_dataset)}")

Example Usage for Model Training

import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from PIL import Image

# Define transforms
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                       std=[0.229, 0.224, 0.225])
])

# Process dataset
def preprocess_data(examples):
    images = [transform(img.convert('RGB')) for img in examples['image']]
    return {'pixel_values': images, 'labels': examples['label']}

# Apply preprocessing
train_dataset = train_dataset.with_transform(preprocess_data)

# Create DataLoader
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

# Example training loop
for batch in train_loader:
    images = torch.stack(batch['pixel_values'])
    labels = torch.tensor(batch['labels'])
    # Your training code here
    break

Class Label Access

# Get all class names
class_names = train_dataset.features['label'].names

# Print some examples
for i, example in enumerate(train_dataset.take(5)):
    image = example['image']
    label_idx = example['label']
    label_name = example['label_name']
    print(f"Sample {i}: {label_name} (class {label_idx})")

🎯 Applications

This dataset is ideal for:

  • Agricultural Disease Detection: Build AI models for early disease identification
  • Precision Agriculture: Develop tools for Bangladeshi farmers
  • Computer Vision Research: Multi-class image classification studies
  • Transfer Learning: Pre-training for region-specific agricultural models
  • Mobile Applications: Create farmer-friendly disease detection apps
  • Agricultural Extension Services: Support digital agriculture initiatives in Bangladesh

πŸ† Potential Research Areas

  • Region-Specific Disease Patterns: Study disease prevalence in South Asian agriculture
  • Multi-Crop Classification: Develop unified models across different crop types
  • Few-Shot Learning: Address classes with limited samples (e.g., Tea diseases)
  • Domain Adaptation: Transfer knowledge between different crop diseases
  • Explainable AI: Understanding model decisions for agricultural applications

πŸ“„ Dataset Structure

bd-crop-veg-plant-disease-dataset/
β”œβ”€β”€ train/
β”‚   β”œβ”€β”€ Banana_Black_Pitting_or_Banana_Rust/
β”‚   β”œβ”€β”€ Banana_Crown_Rot/
β”‚   β”œβ”€β”€ ...
β”‚   └── Wheat_stripe_rust/
β”œβ”€β”€ valid/
β”‚   β”œβ”€β”€ Banana_Black_Pitting_or_Banana_Rust/
β”‚   β”œβ”€β”€ Banana_Crown_Rot/
β”‚   β”œβ”€β”€ ...
β”‚   └── Wheat_stripe_rust/
└── test/
    β”œβ”€β”€ Banana_Black_Pitting_or_Banana_Rust/
    β”œβ”€β”€ Banana_Crown_Rot/
    β”œβ”€β”€ ...
    └── Wheat_stripe_rust/

βš–οΈ License

This dataset is licensed under CC BY-NC-SA 4.0. For commercial use, please contact: [email protected]

πŸ“š Citation

If you use this dataset in your research, please cite:

@dataset{saon110_bd_crop_disease_2025,
  title={Bangladesh Multi-Crop Disease Classification Dataset},
  author={Sijon Chisty Saon},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/Saon110/bd-crop-vegetable-plant-disease-dataset}
}

🀝 Contributing

Contributions to improve and expand this dataset are welcome! Please feel free to:

  • Report issues or inconsistencies
  • Suggest additional crops relevant to Bangladesh
  • Contribute new disease categories
  • Improve data quality

πŸ“ž Contact

For questions, suggestions, or collaborations related to this dataset, please create an issue in the dataset repository or feel free to mail me : [email protected]


Keywords: Bangladesh, Agriculture, Plant Disease, Computer Vision, Deep Learning, Crop Classification, South Asia, Farming, AI, Machine Learning

Downloads last month
32

Models trained or fine-tuned on Saon110/bd-crop-vegetable-plant-disease-dataset