Update paper and add GitHub links to dataset card

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +13 -10
README.md CHANGED
@@ -1,23 +1,26 @@
1
  ---
2
- license: apache-2.0
3
  language:
4
  - en
5
- tags:
6
- - underwater
7
- - instance
8
- - segmentation
9
- - image
10
- - text
11
  size_categories:
12
  - 10K<n<100K
13
  task_categories:
14
  - image-segmentation
15
  - object-detection
16
  - image-classification
 
 
 
 
 
 
17
  ---
18
- We propose a large-scale underwater instance segmentation dataset, [**UIIS10K**](#datasets), which includes **10,048 images** with pixel-level annotations for 10 categories. As far as we know, this is **the largest underwater instance segmentation dataset** available and can be used as a benchmark for evaluating underwater segmentation methods.
 
19
 
20
- More information about this dataset pleaser refer to "[Advancing Marine Research: UWSAM Framework and UIIS10K Dataset for Precise Underwater Instance Segmentation](https://arxiv.org/abs/2505.15581)".
 
 
21
 
22
  The dataset in `UIIS10K.zip` follows the COCO format and is organized as follows:
23
  ```
@@ -47,7 +50,7 @@ If you find our repo useful for your research, please cite us:
47
 
48
  @article{UIIS10K_Dataset_2025,
49
  author = {Hua Li, Shijie Lian, Zhiyuan Li, Runmin Cong, Chongyi Li, Laurence T. Yang, Weidong Zhang, Sam Kwong},
50
- title = {Taming SAM for Underwater Instance Segmentation and Beyond},
51
  year = {2025},
52
  journal = {arXiv preprint arXiv:2505.15581},
53
  }
 
1
  ---
 
2
  language:
3
  - en
4
+ license: apache-2.0
 
 
 
 
 
5
  size_categories:
6
  - 10K<n<100K
7
  task_categories:
8
  - image-segmentation
9
  - object-detection
10
  - image-classification
11
+ tags:
12
+ - underwater
13
+ - instance
14
+ - segmentation
15
+ - image
16
+ - text
17
  ---
18
+
19
+ We propose a large-scale underwater instance segmentation dataset, [**UIIS10K**](#datasets), which includes **10,048 images** with pixel-level annotations for 10 categories. As far as we know, this is **the largest underwater instance segmentation dataset** available and can be used as a benchmark for evaluating underwater segmentation methods.
20
 
21
+ More information about this dataset please refer to "[Advancing Marine Research: UWSAM Framework and UIIS10K Dataset for Precise Underwater Instance Segmentation](https://huggingface.co/papers/2505.15581)".
22
+
23
+ Code: https://github.com/LiamLian0727/UIIS10K
24
 
25
  The dataset in `UIIS10K.zip` follows the COCO format and is organized as follows:
26
  ```
 
50
 
51
  @article{UIIS10K_Dataset_2025,
52
  author = {Hua Li, Shijie Lian, Zhiyuan Li, Runmin Cong, Chongyi Li, Laurence T. Yang, Weidong Zhang, Sam Kwong},
53
+ title = {Advancing Marine Research: UWSAM Framework and UIIS10K Dataset for Precise Underwater Instance Segmentation},
54
  year = {2025},
55
  journal = {arXiv preprint arXiv:2505.15581},
56
  }