Datasets:
text
stringlengths 4
38
| labels
listlengths 1
67
|
|---|---|
3D-Animator
|
[
0,
1,
74,
75,
76,
77,
78,
168,
204,
415,
416,
462,
536,
743,
1231,
2065,
2258,
2496,
2497
] |
Agronom
|
[
1248,
2523
] |
Aktienhändler
|
[
27,
29,
30,
31,
404,
428,
481,
482,
779,
870,
872,
874,
941,
942,
943,
944,
945,
1313,
1328,
1451,
1519,
1521,
1663,
1818,
1819,
2024,
2053,
2295,
2363,
2364,
2391,
2397,
2494
] |
Akupunkteur
|
[
1200,
1407
] |
Analyst für Netzwerksicherheit
|
[
11,
12,
270,
310,
322,
457,
458,
728,
949,
950,
954,
955,
956,
971,
1292,
1627,
1628,
1629,
1630,
1634,
1637,
1638,
1641,
1642,
1643,
1645,
1647,
1648,
1984,
1986,
2038,
2081,
2197,
2198,
2199,
2200,
2201,
2223,
2228,
2250,
2449,
2450
] |
Anästhesist
|
[
107,
108,
175,
178,
627,
995,
1048,
2091
] |
Apotheker
|
[
109,
110,
176,
357,
518,
798,
1075,
1083,
1306,
1766,
2032,
2112
] |
Archivar
|
[
119,
120,
121,
140,
188,
368,
369,
571,
1053,
1277,
1536,
1806,
1941,
1947,
2341,
2346,
2487
] |
Automatisierungstechniker
|
[
44,
99,
225,
226,
308,
332,
1128,
1363,
1824,
1829,
1839,
1997,
2022,
2045,
2162,
2163,
2164,
2214,
2230,
2256,
2297
] |
Automobiltechniker
|
[
85,
506,
1041,
1114,
2220,
2224
] |
Bankier
|
[
129,
139,
146,
152,
153,
243,
245,
271,
347,
361,
363,
383,
441,
443,
470,
505,
545,
595,
630,
677,
1015,
1016,
1195,
1197,
1198,
1204,
1310,
1322,
1324,
1334,
1348,
1367,
1566,
1682,
1683,
1684,
1748,
1749,
1750,
1751,
1756,
1906,
1907,
1908,
2023,
2029,
2105,
2141,
2340,
2355
] |
Barkeeper
|
[
95,
96,
97,
136,
137,
246,
248,
249,
250,
252,
254,
272,
405,
421,
452,
453,
558,
769,
885,
1054,
1123,
1133,
1159,
1253,
1255,
1589,
1655,
1912,
1913,
1915,
1974,
2130,
2427
] |
Bautechniker
|
[
141,
187,
260,
263,
366,
392,
520,
1098,
1276,
1732,
1733,
1788,
1807,
1969,
2099,
2140,
2146,
2176,
2215,
2216,
2219,
2264,
2491,
2507,
2508,
2509
] |
Berater für Unternehmensstrategie
|
[
300,
333,
341,
359,
398,
399,
440,
522,
551,
575,
580,
594,
672,
673,
804,
813,
816,
831,
891,
1280,
1288,
1298,
1311,
1321,
1499,
1584,
1762,
2046,
2118,
2171,
2172,
2175,
2345,
2355,
2357,
2358,
2370,
2374,
2482
] |
Biomedizinischer Techniker
|
[
2460
] |
Bohrtechniker
|
[
33,
227,
230,
309,
378,
379,
380,
381,
390,
609,
1554,
2260,
2432
] |
Briefzusteller
|
[
191,
384,
1443,
1448,
1720
] |
Bäcker
|
[
173,
409,
411,
436,
733,
1084,
1085,
1105,
1106,
1107,
1225,
1227,
1282,
1302,
1405,
2129
] |
Caterer
|
[
173,
215,
217,
246,
247,
250,
401,
410,
411,
413,
420,
436,
733,
1084,
1085,
1086,
1201,
1225,
1282,
1302,
1685,
1743,
1914,
2015,
2129
] |
Chemischer Operator
|
[
80,
439,
1822,
1826,
1828,
2047
] |
Computer-Reparaturtechniker
|
[
45,
455,
458,
459,
460,
464,
465,
501,
502,
625,
881,
882,
916,
948,
959,
960,
1111,
1210,
1672,
1673,
1959,
1979,
2039,
2196,
2217,
2257,
2452
] |
Desktop-Supporttechniker
|
[
42,
45,
52,
57,
58,
98,
229,
298,
306,
358,
458,
460,
465,
498,
499,
501,
504,
700,
735,
911,
912,
914,
915,
917,
951,
957,
960,
1111,
1365,
1384,
1763,
1959,
1967,
1975,
1977,
1978,
1980,
2025,
2027,
2059,
2190,
2194,
2198,
2217,
2272
] |
Direktor der Galerie
|
[
429,
788,
789,
790,
1122,
1213,
1214,
1216,
1217,
1218,
1221,
1222,
1795
] |
Drahtloser Techniker
|
[
166,
199,
230,
235,
450,
610,
612,
1056,
1057,
1153,
1381,
1489,
1639,
1640,
1816,
1848,
1925,
1952,
2222,
2227,
2234,
2235,
2240,
2288,
2289
] |
Elektroniktechniker
|
[
497,
540,
553,
632,
634,
635,
636,
637,
875,
876,
877,
878,
879,
880,
882,
993,
1278,
1369,
1724,
1996,
2085,
2088,
2195,
2209,
2220,
2224,
2229,
2238,
2243,
2244,
2245,
2247,
2248
] |
Exekutive für Öffentlichkeitsarbeit
|
[
9,
132,
274,
285,
318,
343,
344,
596,
599,
1099,
1100,
1102,
1145,
1163,
1167,
1168,
1301,
1326,
1385,
1386,
1387,
1388,
1389,
1393,
1394,
1477,
1490,
1498,
1500,
1502,
1576,
1581,
1582,
1835,
1991,
2035,
2060,
2062,
2063,
2082,
2116,
2174,
2381,
2527
] |
Explorationsgeologe
|
[
299,
348,
349,
427,
699,
807,
808,
809,
1243,
2087,
2325,
2373,
2420,
2488
] |
Feuerwehrmann
|
[
258,
707,
708,
709,
710,
711,
712,
1652,
2107,
2119
] |
Filmregisseur
|
[
147,
216,
408,
532,
549,
607,
651,
664,
667,
669,
671,
674,
713,
714,
715,
717,
1042,
1189,
1232,
1284,
1346,
1404,
1716,
1768,
1769,
1770,
1772,
1776,
1878,
1989,
2036,
2096,
2097,
2147,
2270,
2439,
2442,
2517,
2519
] |
Fotograf
|
[
171,
754,
755,
756,
757,
758,
759,
760,
1215,
1303,
1595,
1781,
2069,
2090,
2419
] |
Friseur
|
[
253,
697,
765,
867,
868,
1174,
1549,
1592,
1593,
1737,
1944,
1945,
2167
] |
Front Desk-Betreuer
|
[
16,
133,
145,
148,
267,
281,
508,
676,
766,
767,
768,
769,
770,
771,
773,
796,
904,
1124,
1138,
1151,
1336,
1352,
1472,
1486,
1583,
1619,
1620,
1681,
1734,
1851,
2018,
2115,
2121,
2122,
2135,
2187,
2189,
2207,
2376,
2390,
2427
] |
Gabelstaplerfahrer
|
[
353,
642,
1155,
1233,
1234,
1239,
1241,
1242,
1244,
1484,
1526,
1694,
1938,
2013,
2403,
2406,
2493
] |
Grafik-Designer
|
[
206,
284,
316,
356,
489,
494,
495,
496,
503,
511,
834,
835,
836,
837,
838,
839,
840,
841,
842,
843,
892,
1101,
1137,
1182,
1183,
1185,
1187,
1188,
1190,
1228,
1474,
1491,
1495,
1512,
2265,
2444,
2462
] |
Grundschullehrer
|
[
36,
106,
279,
572,
641,
647,
648,
795,
812,
845,
846,
853,
1067,
1259,
1260,
1261,
1262,
1263,
1264,
1265,
1266,
1267,
1268,
1271,
1272,
1273,
1397,
1398,
1399,
1400,
1527,
1669,
1676,
1836,
1964,
1971,
2021,
2080,
2142,
2284,
2343,
2352
] |
Handelsmarketing-Analyst
|
[
17,
51,
65,
161,
269,
873,
1089,
1090,
1092,
1139,
1513,
2058
] |
Herausgeber
|
[
163,
275,
283,
291,
302,
335,
437,
817,
887,
918,
919,
920,
921,
980,
989,
990,
1156,
1171,
1290,
1291,
1351,
1361,
1382,
1385,
1387,
1485,
1518,
1543,
1551,
1809,
1835,
1873,
1874,
1875,
1876,
1877,
1898,
2398,
2423,
2480,
2527
] |
Hochzeitsplaner
|
[
334,
582,
592,
657,
658,
927,
928,
1125,
1140,
1697,
1698,
2376,
2377,
2379
] |
Hundefrisör
|
[
905,
932,
933,
2521
] |
Hundetrainer
|
[
932,
2303,
2304,
2521
] |
Hydrogeologe
|
[
699,
808,
883,
935,
1279,
1805,
1810
] |
Immobilienmakler
|
[
15,
295,
337,
414,
454,
621,
643,
816,
827,
929,
963,
964,
966,
968,
969,
970,
1316,
1375,
1391,
1412,
1413,
1416,
1418,
1450,
1452,
1453,
1454,
1649,
1650,
1782,
2308,
2310,
2331,
2332,
2426,
2492,
2501
] |
Import-Exportexperte
|
[
8,
46,
69,
346,
683,
684,
685,
686,
687,
972,
973,
974,
975,
976,
977,
978,
979,
1424,
1884,
2056,
2061
] |
Innenarchitektin
|
[
311,
992,
1371
] |
Investment-Banking-Analyst
|
[
49,
54,
59,
60,
61,
62,
64,
244,
400,
655,
721,
1008,
1016,
1017,
1046,
1050,
1193,
1194,
1195,
1324,
1446,
1562,
1566,
1572,
1580,
1684,
1725,
1726,
1731,
1744,
1745,
1747,
1752,
1753,
1850,
1923,
2316
] |
Java-Entwickler
|
[
56,
100,
649,
1020,
1022,
1023,
1024,
1026,
1027,
1028,
1029,
1444,
1586,
1599,
1803,
1992,
2002,
2004,
2254,
2255,
2259,
2280,
2281,
2282,
2414,
2467
] |
Kameramann
|
[
147,
186,
216,
241,
294,
387,
532,
549,
566,
607,
617,
664,
671,
705,
713,
714,
715,
1042,
1043,
1359,
1616,
1728,
1772,
1775,
1878,
1982,
2048,
2439,
2441,
2442,
2479,
2517
] |
Kassiererin
|
[
24,
72,
142,
238,
245,
288,
377,
391,
628,
629,
680,
772,
774,
784,
893,
899,
946,
1208,
1209,
1212,
1565,
1568,
1577,
1585,
1937,
1943,
1951,
2130,
2168,
2285,
2293,
2431,
2520
] |
Kindergärtnerin
|
[
36,
37,
158,
165,
338,
597,
648,
775,
776,
846,
853,
1064,
1067,
1258,
1259,
1261,
1263,
1264,
1265,
1266,
1267,
1272,
1397,
1398,
1399,
1400,
1836,
1837,
1964,
1970,
2011,
2021,
2080,
2104,
2307,
2343,
2430,
2455
] |
Kindermädchen
|
[
70,
158,
236,
328,
1061,
1062,
1064,
1066,
1152,
1172,
1269,
1722,
1735,
1849,
2006,
2181,
2512
] |
Klempner
|
[
259,
1071,
1813,
2453
] |
Koch
|
[
144,
173,
247,
250,
409,
411,
419,
436,
526,
533,
733,
1085,
1201,
1202,
1224,
1225,
1226,
1254,
1405,
1685,
2015,
2113
] |
Komponist
|
[
194,
198,
242,
351,
716,
1608,
1609,
1612,
1613,
1615,
2012
] |
Kreditsachbearbeiter
|
[
5,
6,
7,
220,
290,
317,
336,
468,
469,
470,
471,
472,
557,
726,
936,
937,
938,
939,
940,
965,
1141,
1197,
1285,
1304,
1411,
1651,
1755,
1939,
1972,
2023,
2030,
2334,
2365,
2369,
2392,
2500,
2504
] |
Lebensmitteltechnologe
|
[
103,
122,
652,
1256,
1257,
1473,
2276,
2279,
2386
] |
Lkw-Fahrer
|
[
350,
603,
604,
691,
692,
1379,
2148,
2177,
2296,
2317,
2405
] |
Logistikexperte
|
[
273,
559,
821,
833,
850,
1002,
1011,
1235,
1236,
1237,
1238,
1239,
1240,
1305,
1308,
1318,
1341,
1342,
1356,
1373,
1374,
1422,
1425,
1426,
1427,
1428,
1429,
1430,
1432,
1433,
1434,
1435,
1436,
1464,
1624,
1887
] |
Luft- und Raumfahrttechniker
|
[
14,
86,
749,
1442,
1852,
1909,
2506
] |
Maschinenbautechniker
|
[
143,
319,
521,
1112,
1113,
1287,
1496,
1522,
1523,
1529,
1530,
1531,
1532,
1668,
1724,
1727,
1815,
2133,
2224,
2229,
2247,
2248,
2249,
2385,
2415
] |
Maskenbildner
|
[
253,
765,
867,
868,
1504,
1784,
1944,
1966
] |
Medieneinkäufer
|
[
276,
282,
327,
388,
389,
510,
513,
514,
515,
527,
561,
586,
1000,
1009,
1115,
1116,
1117,
1206,
1299,
1314,
1315,
1343,
1390,
1475,
1493,
1498,
1515,
1516,
1533,
1534,
1535,
1539,
1540,
1541,
1658,
1990,
2173,
2192,
2394,
2396
] |
Metallurge
|
[
1550,
1690
] |
Modedesignerin
|
[
123,
138,
162,
170,
293,
325,
423,
485,
488,
489,
490,
491,
492,
493,
589,
614,
922,
1166,
1329,
1396,
1512,
1569,
1591,
1654,
1736,
1737,
1758,
1961,
2166,
2265,
2298,
2510
] |
Nachrichten-Anker
|
[
79,
83,
156,
523,
701,
702,
703,
793,
1598,
1602,
1616,
1617,
1618,
1623,
1657,
1773,
1777,
1804,
1841,
1847,
1928,
1930,
1931,
1973,
2068,
2072,
2077,
2078,
2204,
2205,
2395,
2454,
2456,
2514
] |
Netzwerktechniker
|
[
41,
53,
321,
323,
355,
476,
477,
534,
563,
611,
682,
958,
1010,
1323,
1344,
1457,
1458,
1560,
1628,
1630,
1631,
1633,
1634,
1636,
1638,
1642,
1644,
1646,
1647,
1853,
1890,
2191,
2208,
2226,
2228,
2237,
2240,
2242,
2246,
2257,
2289,
2348
] |
Persönlicher Fitnesstrainer
|
[
382,
467,
546,
591,
690,
736,
737,
738,
739,
740,
741,
847,
982,
1687,
1688,
2503
] |
Pilot einer Fluggesellschaft
|
[
256,
425,
430,
451,
547,
730,
744,
746,
747,
748,
1094,
1403,
2108,
2417
] |
Politikberaterin
|
[
13,
1319,
1501,
1621,
1700,
1701,
1702,
1817,
1879,
2134,
2143
] |
Polizei-Detektiv
|
[
360,
424,
764,
1401,
1705,
1706,
1707,
1708,
1709,
1710,
1754,
1910,
1983,
2005,
2010,
2083,
2130,
2138,
2144,
2349,
2350,
2351,
2458
] |
Portfolio-Analyst
|
[
25,
43,
48,
54,
63,
81,
305,
442,
585,
587,
721,
727,
750,
751,
810,
816,
884,
908,
1013,
1014,
1018,
1317,
1471,
1574,
1579,
1587,
1712,
1714,
1715,
1818,
1924,
2031,
2120,
2127,
2139,
2316
] |
Private-Equity-Analyst
|
[
54,
59,
60,
62,
64,
66,
362,
655,
721,
724,
1012,
1013,
1014,
1015,
1016,
1017,
1328,
1520,
1562,
1572,
1574,
1580,
1726,
1731,
1745,
1753,
1923,
2120,
2316
] |
Privater Ermittler
|
[
200,
424,
542,
660,
661,
662,
663,
924,
1199,
1704,
1705,
1717,
1883,
2007,
2010,
2028
] |
Professor für Geschichte
|
[
21,
22,
177,
181,
190,
209,
231,
233,
286,
478,
608,
694,
791,
792,
925,
926,
1126,
1555,
1789,
1790,
1792,
1798,
1800,
1820,
2017,
2102,
2183,
2447,
2451
] |
Psychotherapeut
|
[
301,
342,
345,
431,
544,
565,
618,
695,
752,
1074,
1077,
1078,
1079,
1081,
1220,
1408,
1409,
1410,
1414,
1415,
1419,
1420,
1597,
1746,
1831,
1832,
1834,
1962,
2016,
2301
] |
Radiologischer Technologe
|
[
371,
525,
531,
1561,
1843,
1844,
1845,
1846,
1933,
2323,
2375
] |
Rechtsanwalt
|
[
32,
90,
91,
92,
93,
94,
149,
155,
221,
222,
277,
364,
432,
567,
665,
688,
815,
896,
1004,
1030,
1031,
1033,
1034,
1035,
1037,
1289,
1307,
1350,
1478,
1556,
1689,
1827,
1858,
1859,
1860,
1861,
1862,
1863,
1864,
1865,
1866,
1867,
1872,
1881,
1895,
1920,
1921,
1936,
1958,
2009,
2054,
2093,
2103,
2106,
2109,
2123,
2124,
2131,
2137,
2145,
2155,
2170,
2344,
2347,
2400,
2418,
2484
] |
Registrierte Krankenschwester
|
[
112,
128,
167,
207,
365,
753,
902,
903,
996,
1073,
1076,
1178,
1179,
1180,
1181,
1406,
1838,
1902,
1963,
2111,
2383
] |
Reisebüro
|
[
340,
731,
763,
832,
1468,
1896,
1897,
1899,
1900,
1901,
2302,
2314,
2315,
2354
] |
Rundfunk- und Fernsehtechniker
|
[
387,
569,
570,
825,
1524,
1616,
1661,
1927,
1929,
1973,
2231,
2262,
2270,
2439,
2443
] |
Seemann
|
[
668,
869,
1505,
1506,
1507,
1508,
1509,
1968,
2267,
2457,
2518
] |
Spendenaktion
|
[
268,
280,
315,
541,
548,
562,
573,
579,
581,
588,
598,
778,
1039,
1131,
1134,
1136,
1148,
1354,
1392,
1465,
1466,
1467,
1469,
1492,
1573,
2114,
2353,
2513
] |
Sport-Trainer
|
[
172,
185,
426,
438,
781,
1176,
1274,
1275,
1802,
1965,
2070,
2071,
2073,
2074,
2075,
2076,
2294
] |
Stadtplaner
|
[
113,
114,
115,
116,
117,
118,
169,
487,
519,
654,
1246,
1247,
1286,
1723,
1808,
2094
] |
Steuerberater
|
[
154,
196,
205,
393,
394,
395,
574,
623,
698,
720,
888,
889,
1203,
1223,
1312,
1438,
1482,
1525,
1558,
1571,
1780,
1857,
2100,
2151,
2152,
2153,
2154,
2156,
2157,
2158,
2159,
2160,
2161,
2165,
2292,
2402,
2522
] |
Sänger
|
[
197,
239,
240,
242,
287,
473,
794,
811,
1610,
1611,
1612,
1613,
1614,
1615,
1787,
2012,
2202,
2342
] |
Talentgewinnung
|
[
55,
131,
164,
278,
312,
313,
329,
330,
543,
564,
576,
577,
678,
785,
854,
855,
856,
857,
859,
860,
861,
862,
865,
866,
907,
1005,
1154,
1320,
1368,
1380,
1395,
1459,
1476,
1479,
1480,
1481,
1483,
1488,
1578,
1622,
1625,
1675,
1679,
1814,
1889,
2041,
2042,
2043,
2044,
2203,
2362,
2371
] |
Techniker für Analog-Design
|
[
40,
102,
512,
1249,
1250,
1252,
1281,
1283,
1309,
1586,
1588,
1692,
1693,
1953,
1954,
2084,
2089,
2225,
2232
] |
Techniker für Telekommunikation
|
[
166,
199,
331,
355,
611,
612,
826,
1056,
1057,
1103,
1153,
1323,
1381,
1632,
1648,
1816,
1840,
1925,
1952,
2081,
2191,
2227,
2236,
2287,
2288,
2289,
2290,
2291
] |
Technischer Rekrutierer
|
[
10,
104,
105,
211,
312,
554,
626,
786,
849,
858,
860,
861,
862,
863,
864,
897,
952,
953,
1006,
1205,
1345,
1368,
1377,
1476,
1483,
1547,
1625,
1674,
1675,
1677,
1678,
1680,
1740,
1904,
1905,
1911,
2014,
2043,
2184,
2253,
2266,
2271,
2283,
2367,
2368,
2371,
2393,
2421
] |
Textil-Designer
|
[
162,
170,
293,
423,
484,
485,
488,
489,
490,
491,
492,
493,
614,
1119,
1591,
1594,
1736,
1737,
1961,
2445,
2510
] |
Tierarzt
|
[
1894,
2305,
2437,
2438
] |
Treuhänder
|
[
422,
774,
782,
904
] |
Tänzerin
|
[
446,
898,
1232,
1779,
1955,
2206
] |
Umwelt Künstler
|
[
2,
3,
4,
417,
1230,
1596,
2064,
2065,
2269,
2274,
2299,
2498
] |
Vermittler
|
[
73,
87,
88,
89,
93,
150,
326,
364,
568,
620,
665,
787,
814,
815,
896,
1821,
1827,
1859,
1861,
1868,
1869,
1871,
1920,
1921,
1958,
2009,
2040,
2124,
2170,
2418
] |
Versicherungsmakler
|
[
15,
18,
19,
435,
600,
621,
681,
723,
818,
964,
1093,
1096,
1097,
1327,
1358,
1391,
1413,
1416,
1417,
1418,
1450,
1452,
1453,
1454,
1503,
1514,
1686,
2333,
2335,
2336,
2337,
2338,
2339,
2399,
2407,
2408,
2409,
2410,
2411,
2412,
2413,
2424,
2426,
2428
] |
Vertreter für technische Unterstützung
|
[
42,
45,
50,
57,
67,
228,
229,
297,
298,
460,
465,
500,
501,
911,
912,
913,
914,
915,
916,
917,
948,
959,
960,
1111,
1162,
1210,
1378,
1564,
1763,
1959,
1967,
2001,
2026,
2034,
2193,
2272,
2425,
2452
] |
Video-Editor
|
[
186,
216,
529,
530,
532,
549,
617,
619,
669,
713,
714,
715,
717,
718,
1042,
1043,
1149,
1229,
1346,
1359,
1542,
1604,
1718,
1721,
1728,
1772,
1774,
1775,
1878,
2036,
2048,
2441,
2442
] |
Webentwickler
|
[
100,
224,
237,
649,
732,
777,
931,
997,
1001,
1186,
1211,
1293,
1360,
1362,
1383,
1605,
1729,
1765,
1993,
1994,
1995,
1998,
1999,
2050,
2321,
2322,
2416,
2463,
2464,
2465,
2467,
2468,
2470,
2471,
2472,
2475,
2477
] |
Werbetexter
|
[
343,
552,
593,
602,
848,
918,
986,
987,
988,
990,
994,
998,
1156,
1157,
1158,
1169,
1170,
1171,
1191,
1192,
1339,
1370,
1387,
1470,
1511,
1517,
1778,
2051,
2126,
2128,
2359,
2387,
2388,
2422,
2423,
2434,
2474,
2480
] |
Job Title Similarity Benchmark
This dataset contains the Job Title Similarity benchmark for easy loading with
the HuggingFace datasets library.
Dataset Description
This benchmark provides job title similarity datasets in 11 different languages, including the English evaluation dataset used in the text ranking experiments reported in the paper "Learning Job Titles Similarity from Noisy Skill Labels" by Zbib et al. (2022), as well as the translated datasets for the other languages introduced in "Combined Unsupervised and Contrastive Learning for Multilingual Job Recommendations" by Deniz et al. (2024).
Task Overview
The task involves ranking a set of job titles, given another job title as query, such that the resulting ranking reflects the semantic similarity of each job title to the query. This requires identifying the most relevant job titles based on their semantic similarity to a given query.
English Dataset Creation
The English dataset was built by starting with 2,724 job titles (short text phrases with the name of an occupation). Next, a minimal pre-processing step with light clean up was applied. The job titles were randomly divided into two groups:
- 105 job titles were used as queries
- The remaining job titles were used as corpus documents
Each query/document pair was labeled for binary relevance after adjudicating two independent human annotations. (The inter-annotator agreement for this binary relevance labels was 86%.)
Translated Datasets
The translated datasets in 10 additional languages replicate the English dataset using Human Translation (HT) or Machine Translation (MT).
Original repository: https://github.com/Avature/job-title-similarity
Dataset Structure
Each subset (configuration) contains two splits:
queries: Query job titles with their relevant corpus element indicescorpus: Corpus job titles
Schema
queries split:
| Column | Type | Description |
|---|---|---|
text |
string |
The query job title |
labels |
list[int] |
Indices of relevant corpus job titles |
corpus split:
| Column | Type | Description |
|---|---|---|
text |
string |
The corpus job title |
Usage
from datasets import load_dataset
# Load a specific subset
ds = load_dataset("Avature/Job-Title-Similarity", "en")
# Access the data
query_surface_forms = ds["queries"]["text"]
corpus_surface_forms = ds["corpus"]["text"]
label_lists = ds["queries"]["labels"]
# Example: Get relevant corpus texts for the first query
query_idx = 0
print(f"Query: {query_surface_forms[query_idx]}")
print(f"Similar job titles:")
for corpus_idx in label_lists[query_idx]:
print(f" - {corpus_surface_forms[corpus_idx]}")
Available Subsets
| Subset | Language | Translation | Queries | Corpus | Annotations |
|---|---|---|---|---|---|
en |
English | - | 105 | 2,619 | 2,420 |
de |
German | HT | 104 | 2,529 | 2,342 |
es |
Spanish | MT | 104 | 2,568 | 2,378 |
fr |
French | HT | 104 | 2,488 | 2,299 |
it |
Italian | MT | 104 | 2,528 | 2,344 |
ja |
Japanese | HT | 104 | 2,553 | 2,352 |
ko |
Korean | MT | 104 | 2,542 | 2,345 |
nl |
Dutch | MT | 105 | 2,538 | 2,361 |
pl |
Polish | MT | 105 | 2,513 | 2,335 |
pt |
Portuguese | MT | 104 | 2,523 | 2,331 |
zh |
Chinese | HT | 103 | 2,513 | 2,319 |
Translation key: HT = Human Translation, MT = Machine Translation
Citation
If you use this dataset, please cite the original papers:
@article{zbib2022Learning,
title={{Learning Job Titles Similarity from Noisy Skill Labels}},
author={Rabih Zbib and
Lucas Alvarez Lacasa and
Federico Retyk and
Rus Poves and
Juan Aizpuru and
Hermenegildo Fabregat and
Vaidotas Šimkus and
Emilia García-Casademont},
journal={{FEAST, ECML-PKDD 2022 Workshop}},
year={{2022}},
url="https://feast-ecmlpkdd.github.io/archive/2022/papers/FEAST2022_paper_4972.pdf"
}
@inproceedings{deniz2024Combined,
title = {Combined Unsupervised and Contrastive Learning for Multilingual Job Recommendations},
author = {Daniel Deniz and
Federico Retyk and
Laura García-Sardiña and
Hermenegildo Fabregat and
Luis Gasco and
Rabih Zbib},
booktitle = {Proceedings of the 4th Workshop on Recommender Systems for Human Resources
(RecSys in {HR} 2024), in conjunction with the 18th {ACM} Conference on
Recommender Systems},
year = {2024},
}
License
This dataset is licensed under the Apache 2.0 License. See the LICENSE file for more information.
- Downloads last month
- 65