llama71b-mentalchat16k
This model is a fine-tuned version of meta-llama/Llama-3.1-70B-Instruct on the ShenLab/MentalChat16k dataset. It achieves the following results on the evaluation set:
- Loss: 0.6542
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.8207 | 0.1496 | 100 | 0.7920 |
| 0.7716 | 0.2992 | 200 | 0.7492 |
| 0.7208 | 0.4488 | 300 | 0.7363 |
| 0.7237 | 0.5985 | 400 | 0.7187 |
| 0.7156 | 0.7481 | 500 | 0.7088 |
| 0.7024 | 0.8977 | 600 | 0.6963 |
| 0.6125 | 1.0464 | 700 | 0.7004 |
| 0.5753 | 1.1960 | 800 | 0.6942 |
| 0.5497 | 1.3456 | 900 | 0.6878 |
| 0.5589 | 1.4952 | 1000 | 0.6804 |
| 0.5453 | 1.6448 | 1100 | 0.6761 |
| 0.5316 | 1.7945 | 1200 | 0.6693 |
| 0.5422 | 1.9441 | 1300 | 0.6634 |
| 0.349 | 2.0928 | 1400 | 0.7011 |
| 0.3481 | 2.2424 | 1500 | 0.7033 |
| 0.337 | 2.3920 | 1600 | 0.7048 |
| 0.3505 | 2.5416 | 1700 | 0.7049 |
| 0.3424 | 2.6912 | 1800 | 0.7052 |
LLAMA 3.1 TEST SET EVALUATION:
================================================== ROUGE Scores (Average F-Measure):
- ROUGE-1: 0.3051
- ROUGE-2: 0.1122
- ROUGE-L: 0.1678
BLEU Score: - BLEU: 0.0646
Framework versions
- PEFT 0.18.0
- Transformers 4.57.1
- Pytorch 2.5.1+cu124
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for advy/llama71b-mentalchat16k
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.1-70B-Instruct