Normal1919/THW
This model is a fine-tuned version of microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft on the private dataset.
How to use
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from transformers import AutoModelForImageClassification
from matplotlib import pyplot as plt
model_name = "Normal1919/THW"
model = AutoModelForImageClassification.from_pretrained(model_name)
model.eval()
# model = torch.compile(model)
image_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.697, 0.633, 0.635], std=[0.3135, 0.320, 0.315])
])
with torch.no_grad():
image_raw = torchvision.io.read_image("test_img/c9f00dbb7e8fe20538fcc71b1dc0fbb913029959.png")
if image_raw.size()[0] == 1:
image_raw = torch.cat([image_raw]*3, 0)
if image_raw.size()[0] == 4:
image_raw = image_raw[:3]
edit_image_tensor: torch.Tensor = image_transform(image_raw)
edit_image_tensor = edit_image_tensor.unsqueeze(0)
outputs = model(pixel_values=edit_image_tensor)
logits = F.sigmoid(outputs.logits)[0]
ind = logits.argmax().item()
print(model.config.id2label[ind])
cha_names = [model.config.id2label[i] for i in range(146)]
cha_probs = logits.numpy()
names_probs = list(zip(cha_names, cha_probs))
names_probs = sorted(names_probs, key=lambda x: x[1], reverse=True)
print(names_probs)
top_k = 10
names_show = []
probs_show = []
for i in range(top_k):
names_show.append(names_probs[i][0])
probs_show.append(names_probs[i][1])
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.figure(figsize=(12, 8))
plt.bar(names_show, probs_show)
plt.show()
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Normal1919/THW
Evaluation results
- None on Noneself-reportedNone