cellate-tapt_freeze_llrd-LR_2e-05

This model is a fine-tuned version of Mardiyyah/biomedbert_model_extended_untrained on the Mardiyyah/TAPT_CeLLaTe1.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 5.8892
  • Accuracy: 0.2761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
10.1692 1.0 6 11.1264 0.0
9.9435 2.0 12 10.5601 0.0
9.3201 3.0 18 9.8066 0.0004
8.4869 4.0 24 8.8692 0.0080
7.8056 5.0 30 8.1258 0.0377
7.3126 6.0 36 7.8349 0.0633
6.9357 7.0 42 7.4240 0.0871
6.652 8.0 48 7.2423 0.1479
6.3972 9.0 54 6.9245 0.1860
6.2035 10.0 60 6.7783 0.2090
5.9674 11.0 66 6.5090 0.2233
5.8018 12.0 72 6.2905 0.2396
5.6325 13.0 78 6.1065 0.2698
5.581 14.0 84 6.0982 0.2694
5.4227 15.0 90 6.2502 0.2484
5.4131 16.0 96 5.9184 0.2669
5.726 16.7273 100 5.8348 0.2815

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
12
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/cellate-tapt_freeze_llrd-LR_2e-05

Finetuned
(5)
this model

Evaluation results