cellate-tapt_freeze_llrd-LR_2e-05
This model is a fine-tuned version of Mardiyyah/biomedbert_model_extended_untrained on the Mardiyyah/TAPT_CeLLaTe1.0 dataset. It achieves the following results on the evaluation set:
- Loss: 5.8892
- Accuracy: 0.2761
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 10.1692 | 1.0 | 6 | 11.1264 | 0.0 |
| 9.9435 | 2.0 | 12 | 10.5601 | 0.0 |
| 9.3201 | 3.0 | 18 | 9.8066 | 0.0004 |
| 8.4869 | 4.0 | 24 | 8.8692 | 0.0080 |
| 7.8056 | 5.0 | 30 | 8.1258 | 0.0377 |
| 7.3126 | 6.0 | 36 | 7.8349 | 0.0633 |
| 6.9357 | 7.0 | 42 | 7.4240 | 0.0871 |
| 6.652 | 8.0 | 48 | 7.2423 | 0.1479 |
| 6.3972 | 9.0 | 54 | 6.9245 | 0.1860 |
| 6.2035 | 10.0 | 60 | 6.7783 | 0.2090 |
| 5.9674 | 11.0 | 66 | 6.5090 | 0.2233 |
| 5.8018 | 12.0 | 72 | 6.2905 | 0.2396 |
| 5.6325 | 13.0 | 78 | 6.1065 | 0.2698 |
| 5.581 | 14.0 | 84 | 6.0982 | 0.2694 |
| 5.4227 | 15.0 | 90 | 6.2502 | 0.2484 |
| 5.4131 | 16.0 | 96 | 5.9184 | 0.2669 |
| 5.726 | 16.7273 | 100 | 5.8348 | 0.2815 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 12