Update README.md
Browse files
README.md
CHANGED
|
@@ -118,74 +118,13 @@ Users (both direct and downstream) should be made aware of the following risks,
|
|
| 118 |
|
| 119 |
## How to Get Started with the Model
|
| 120 |
```python
|
| 121 |
-
|
| 122 |
-
import
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
Wav2Vec2Model,
|
| 131 |
-
CLIPModel,
|
| 132 |
-
AutoTokenizer
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
class MultiModalModel(nn.Module):
|
| 136 |
-
def __init__(self):
|
| 137 |
-
super(MultiModalModel, self).__init__()
|
| 138 |
-
# 初始化子模型
|
| 139 |
-
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
|
| 140 |
-
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
|
| 141 |
-
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
|
| 142 |
-
self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
| 143 |
-
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
| 144 |
-
|
| 145 |
-
# 初始化分词器和处理器
|
| 146 |
-
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
|
| 147 |
-
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
| 148 |
-
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
| 149 |
-
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
|
| 150 |
-
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
|
| 151 |
-
|
| 152 |
-
def forward(self, task, inputs):
|
| 153 |
-
if task == 'text_generation':
|
| 154 |
-
attention_mask = inputs.get('attention_mask')
|
| 155 |
-
outputs = self.text_generator.generate(
|
| 156 |
-
inputs['input_ids'],
|
| 157 |
-
max_new_tokens=100,
|
| 158 |
-
pad_token_id=self.text_tokenizer.eos_token_id,
|
| 159 |
-
attention_mask=attention_mask,
|
| 160 |
-
top_p=0.9,
|
| 161 |
-
top_k=50,
|
| 162 |
-
temperature=0.8,
|
| 163 |
-
do_sample=True
|
| 164 |
-
)
|
| 165 |
-
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 166 |
-
elif task == 'code_generation':
|
| 167 |
-
attention_mask = inputs.get('attention_mask')
|
| 168 |
-
outputs = self.code_generator.generate(
|
| 169 |
-
inputs['input_ids'],
|
| 170 |
-
max_new_tokens=50,
|
| 171 |
-
pad_token_id=self.code_tokenizer.eos_token_id,
|
| 172 |
-
attention_mask=attention_mask,
|
| 173 |
-
top_p=0.95,
|
| 174 |
-
top_k=50,
|
| 175 |
-
temperature=1.2,
|
| 176 |
-
do_sample=True
|
| 177 |
-
)
|
| 178 |
-
return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 179 |
-
# 添加其他任务的逻辑...
|
| 180 |
-
|
| 181 |
-
# 计算模型参数数量的函数
|
| 182 |
-
def count_parameters(model):
|
| 183 |
-
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 184 |
-
|
| 185 |
-
# 初始化模型
|
| 186 |
-
model = MultiModalModel()
|
| 187 |
-
|
| 188 |
-
# 计算并打印模型参数数量
|
| 189 |
-
total_params = count_parameters(model)
|
| 190 |
-
print(f"模型总参数数量: {total_params}")
|
| 191 |
```
|
|
|
|
| 118 |
|
| 119 |
## How to Get Started with the Model
|
| 120 |
```python
|
| 121 |
+
# Use a pipeline as a high-level helper
|
| 122 |
+
from transformers import pipeline
|
| 123 |
+
|
| 124 |
+
pipe = pipeline("text-generation", model="zeroMN/SHMT")
|
| 125 |
+
```
|
| 126 |
+
```python
|
| 127 |
+
# Load model directly
|
| 128 |
+
from transformers import AutoModel
|
| 129 |
+
model = AutoModel.from_pretrained("zeroMN/SHMT")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
```
|