Create consensus_verification.py
Browse files- consensus_verification.py +85 -0
consensus_verification.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
consensus_verification.py
|
| 3 |
+
A deterministic model for consensus emergence in multi-agent systems.
|
| 4 |
+
"""
|
| 5 |
+
import hashlib
|
| 6 |
+
import numpy as np
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
from typing import Dict, List
|
| 9 |
+
|
| 10 |
+
@dataclass(frozen=True)
|
| 11 |
+
class Claim:
|
| 12 |
+
"""Represents a proposition with a unique identifier and a clarity score."""
|
| 13 |
+
identifier: str # Hash of the canonical statement
|
| 14 |
+
clarity: float # 0.0 (ambiguous) to 1.0 (clear)
|
| 15 |
+
|
| 16 |
+
class ConsensusEngine:
|
| 17 |
+
"""
|
| 18 |
+
Simulates a network of agents converging on belief states through
|
| 19 |
+
iterative local updates.
|
| 20 |
+
"""
|
| 21 |
+
def __init__(self, agent_count: int = 10):
|
| 22 |
+
self.agent_count = agent_count
|
| 23 |
+
self.agents = [{"id": i, "beliefs": {}} for i in range(agent_count)]
|
| 24 |
+
|
| 25 |
+
def process(self, claims: List[Claim]) -> Dict[str, float]:
|
| 26 |
+
"""
|
| 27 |
+
Executes the consensus process.
|
| 28 |
+
Returns a mapping from each claim identifier to its final acceptance ratio.
|
| 29 |
+
"""
|
| 30 |
+
# 1. Initialize agent beliefs stochastically based on claim clarity.
|
| 31 |
+
for agent in self.agents:
|
| 32 |
+
for claim in claims:
|
| 33 |
+
accept_prob = 0.1 + (0.9 * claim.clarity)
|
| 34 |
+
agent["beliefs"][claim.identifier] = 1 if np.random.random() < accept_prob else 0
|
| 35 |
+
|
| 36 |
+
# 2. Iterate: agents adjust beliefs towards network average.
|
| 37 |
+
for _ in range(5):
|
| 38 |
+
network_avg = self._average_beliefs(claims)
|
| 39 |
+
for agent in self.agents:
|
| 40 |
+
for claim in claims:
|
| 41 |
+
current = agent["beliefs"][claim.identifier]
|
| 42 |
+
social_influence = network_avg[claim.identifier] - current
|
| 43 |
+
agent["beliefs"][claim.identifier] = np.clip(current + social_influence * 0.3, 0, 1)
|
| 44 |
+
|
| 45 |
+
# 3. Calculate and return final consensus.
|
| 46 |
+
final_state = {}
|
| 47 |
+
for claim in claims:
|
| 48 |
+
total_acceptance = sum(a["beliefs"][claim.identifier] for a in self.agents)
|
| 49 |
+
final_state[claim.identifier] = round(total_acceptance / self.agent_count, 3)
|
| 50 |
+
return final_state
|
| 51 |
+
|
| 52 |
+
def _average_beliefs(self, claims: List[Claim]) -> Dict[str, float]:
|
| 53 |
+
avg = {}
|
| 54 |
+
for claim in claims:
|
| 55 |
+
total = sum(a["beliefs"].get(claim.identifier, 0) for a in self.agents)
|
| 56 |
+
avg[claim.identifier] = total / self.agent_count
|
| 57 |
+
return avg
|
| 58 |
+
|
| 59 |
+
def run_demonstration():
|
| 60 |
+
"""
|
| 61 |
+
Demonstrates the model's convergence on a small set of claims.
|
| 62 |
+
"""
|
| 63 |
+
# Define claims with varying clarity.
|
| 64 |
+
claim_data = [
|
| 65 |
+
("Water boils at 100°C at sea level.", 0.99),
|
| 66 |
+
("Democracy requires informed participation.", 0.75),
|
| 67 |
+
("Abstract concepts influence material outcomes.", 0.40),
|
| 68 |
+
]
|
| 69 |
+
claims = [
|
| 70 |
+
Claim(identifier=hashlib.sha256(text.encode()).hexdigest()[:16], clarity=score)
|
| 71 |
+
for text, score in claim_data
|
| 72 |
+
]
|
| 73 |
+
print("Claims:")
|
| 74 |
+
for c in claims:
|
| 75 |
+
print(f" ID:{c.identifier} | Clarity:{c.clarity}")
|
| 76 |
+
|
| 77 |
+
# Run the engine.
|
| 78 |
+
engine = ConsensusEngine(agent_count=10)
|
| 79 |
+
result = engine.process(claims)
|
| 80 |
+
print("\nConsensus Results (Acceptance Ratio):")
|
| 81 |
+
for claim_id, ratio in result.items():
|
| 82 |
+
print(f" {claim_id}: {ratio}")
|
| 83 |
+
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
run_demonstration()
|