Supported Claude
Browse files- json_str/claude/request.json +72 -0
- main.py +6 -6
- request.py +95 -1
- response.py +32 -38
json_str/claude/request.json
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "claude-3-5-sonnet-20240620",
|
| 3 |
+
"messages": [
|
| 4 |
+
{
|
| 5 |
+
"role": "user",
|
| 6 |
+
"content": [
|
| 7 |
+
{
|
| 8 |
+
"type": "text",
|
| 9 |
+
"text": "hi"
|
| 10 |
+
}
|
| 11 |
+
]
|
| 12 |
+
}
|
| 13 |
+
],
|
| 14 |
+
"temperature": 0.5,
|
| 15 |
+
"top_p": 0.7,
|
| 16 |
+
"max_tokens": 4096,
|
| 17 |
+
"stream": true,
|
| 18 |
+
"system": "You are Claude, a large language model trained by Anthropic. Use simple characters to represent mathematical symbols. Do not use LaTeX commands. Respond conversationally in English.",
|
| 19 |
+
"tools": [
|
| 20 |
+
{
|
| 21 |
+
"name": "get_search_results",
|
| 22 |
+
"description": "Search Google to enhance knowledge.",
|
| 23 |
+
"input_schema": {
|
| 24 |
+
"type": "object",
|
| 25 |
+
"properties": {
|
| 26 |
+
"prompt": {
|
| 27 |
+
"type": "string",
|
| 28 |
+
"description": "The prompt to search."
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"required": [
|
| 32 |
+
"prompt"
|
| 33 |
+
]
|
| 34 |
+
}
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"name": "get_url_content",
|
| 38 |
+
"description": "Get the webpage content of a URL",
|
| 39 |
+
"input_schema": {
|
| 40 |
+
"type": "object",
|
| 41 |
+
"properties": {
|
| 42 |
+
"url": {
|
| 43 |
+
"type": "string",
|
| 44 |
+
"description": "the URL to request"
|
| 45 |
+
}
|
| 46 |
+
},
|
| 47 |
+
"required": [
|
| 48 |
+
"url"
|
| 49 |
+
]
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"name": "download_read_arxiv_pdf",
|
| 54 |
+
"description": "Get the content of the paper corresponding to the arXiv ID",
|
| 55 |
+
"input_schema": {
|
| 56 |
+
"type": "object",
|
| 57 |
+
"properties": {
|
| 58 |
+
"prompt": {
|
| 59 |
+
"type": "string",
|
| 60 |
+
"description": "the arXiv ID of the paper"
|
| 61 |
+
}
|
| 62 |
+
},
|
| 63 |
+
"required": [
|
| 64 |
+
"prompt"
|
| 65 |
+
]
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
],
|
| 69 |
+
"tool_choice": {
|
| 70 |
+
"type": "auto"
|
| 71 |
+
}
|
| 72 |
+
}
|
main.py
CHANGED
|
@@ -64,12 +64,12 @@ async def process_request(request: RequestModel, provider: Dict):
|
|
| 64 |
|
| 65 |
url, headers, payload = await get_payload(request, engine, provider)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
|
| 74 |
if request.stream:
|
| 75 |
return StreamingResponse(fetch_response_stream(app.state.client, url, headers, payload, engine, request.model), media_type="text/event-stream")
|
|
|
|
| 64 |
|
| 65 |
url, headers, payload = await get_payload(request, engine, provider)
|
| 66 |
|
| 67 |
+
request_info = {
|
| 68 |
+
"url": url,
|
| 69 |
+
"headers": headers,
|
| 70 |
+
"payload": payload
|
| 71 |
+
}
|
| 72 |
+
print(f"Request details: {json.dumps(request_info, indent=2, ensure_ascii=False)}")
|
| 73 |
|
| 74 |
if request.stream:
|
| 75 |
return StreamingResponse(fetch_response_stream(app.state.client, url, headers, payload, engine, request.model), media_type="text/event-stream")
|
request.py
CHANGED
|
@@ -149,8 +149,102 @@ async def get_gpt_payload(request, engine, provider):
|
|
| 149 |
|
| 150 |
return url, headers, payload
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
async def get_claude_payload(request, engine, provider):
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
async def get_payload(request: RequestModel, engine, provider):
|
| 156 |
if engine == "gemini":
|
|
|
|
| 149 |
|
| 150 |
return url, headers, payload
|
| 151 |
|
| 152 |
+
async def gpt2claude_tools_json(json_dict):
|
| 153 |
+
import copy
|
| 154 |
+
json_dict = copy.deepcopy(json_dict)
|
| 155 |
+
keys_to_change = {
|
| 156 |
+
"parameters": "input_schema",
|
| 157 |
+
}
|
| 158 |
+
for old_key, new_key in keys_to_change.items():
|
| 159 |
+
if old_key in json_dict:
|
| 160 |
+
if new_key:
|
| 161 |
+
json_dict[new_key] = json_dict.pop(old_key)
|
| 162 |
+
else:
|
| 163 |
+
json_dict.pop(old_key)
|
| 164 |
+
# if "tools" in json_dict.keys():
|
| 165 |
+
# json_dict["tool_choice"] = {
|
| 166 |
+
# "type": "auto"
|
| 167 |
+
# }
|
| 168 |
+
return json_dict
|
| 169 |
+
|
| 170 |
async def get_claude_payload(request, engine, provider):
|
| 171 |
+
headers = {
|
| 172 |
+
"content-type": "application/json",
|
| 173 |
+
"x-api-key": f"{provider['api']}",
|
| 174 |
+
"anthropic-version": "2023-06-01",
|
| 175 |
+
"anthropic-beta": "tools-2024-05-16"
|
| 176 |
+
}
|
| 177 |
+
url = provider['base_url']
|
| 178 |
+
|
| 179 |
+
messages = []
|
| 180 |
+
for msg in request.messages:
|
| 181 |
+
if isinstance(msg.content, list):
|
| 182 |
+
content = []
|
| 183 |
+
for item in msg.content:
|
| 184 |
+
if item.type == "text":
|
| 185 |
+
text_message = await get_text_message(msg.role, item.text, engine)
|
| 186 |
+
content.append(text_message)
|
| 187 |
+
elif item.type == "image_url":
|
| 188 |
+
image_message = await get_image_message(item.image_url.url, engine)
|
| 189 |
+
content.append(image_message)
|
| 190 |
+
else:
|
| 191 |
+
content = msg.content
|
| 192 |
+
name = msg.name
|
| 193 |
+
if name:
|
| 194 |
+
messages.append({"role": msg.role, "name": name, "content": content})
|
| 195 |
+
elif msg.role != "system":
|
| 196 |
+
messages.append({"role": msg.role, "content": content})
|
| 197 |
+
elif msg.role == "system":
|
| 198 |
+
system_prompt = content
|
| 199 |
+
|
| 200 |
+
payload = {
|
| 201 |
+
"model": request.model,
|
| 202 |
+
"messages": messages,
|
| 203 |
+
"system": system_prompt,
|
| 204 |
+
}
|
| 205 |
+
# json_post = {
|
| 206 |
+
# "model": model or self.engine,
|
| 207 |
+
# "messages": self.conversation[convo_id] if pass_history else [{
|
| 208 |
+
# "role": "user",
|
| 209 |
+
# "content": prompt
|
| 210 |
+
# }],
|
| 211 |
+
# "temperature": kwargs.get("temperature", self.temperature),
|
| 212 |
+
# "top_p": kwargs.get("top_p", self.top_p),
|
| 213 |
+
# "max_tokens": model_max_tokens,
|
| 214 |
+
# "stream": True,
|
| 215 |
+
# }
|
| 216 |
+
|
| 217 |
+
miss_fields = [
|
| 218 |
+
'model',
|
| 219 |
+
'messages',
|
| 220 |
+
'presence_penalty',
|
| 221 |
+
'frequency_penalty',
|
| 222 |
+
'n',
|
| 223 |
+
'user',
|
| 224 |
+
'include_usage',
|
| 225 |
+
]
|
| 226 |
+
|
| 227 |
+
for field, value in request.model_dump(exclude_unset=True).items():
|
| 228 |
+
if field not in miss_fields and value is not None:
|
| 229 |
+
payload[field] = value
|
| 230 |
+
|
| 231 |
+
tools = []
|
| 232 |
+
for tool in request.tools:
|
| 233 |
+
print("tool", type(tool), tool)
|
| 234 |
+
|
| 235 |
+
json_tool = await gpt2claude_tools_json(tool.dict()["function"])
|
| 236 |
+
tools.append(json_tool)
|
| 237 |
+
payload["tools"] = tools
|
| 238 |
+
# del payload["type"]
|
| 239 |
+
# del payload["function"]
|
| 240 |
+
if "tool_choice" in payload:
|
| 241 |
+
payload["tool_choice"] = {
|
| 242 |
+
"type": "auto"
|
| 243 |
+
}
|
| 244 |
+
import json
|
| 245 |
+
print("payload", json.dumps(payload, indent=2, ensure_ascii=False))
|
| 246 |
+
|
| 247 |
+
return url, headers, payload
|
| 248 |
|
| 249 |
async def get_payload(request: RequestModel, engine, provider):
|
| 250 |
if engine == "gemini":
|
response.py
CHANGED
|
@@ -72,47 +72,42 @@ async def fetch_gpt_response_stream(client, url, headers, payload):
|
|
| 72 |
except httpx.ConnectError as e:
|
| 73 |
print(f"连接错误: {e}")
|
| 74 |
|
| 75 |
-
async def fetch_claude_response_stream(client, url, headers, payload,
|
| 76 |
try:
|
| 77 |
timestamp = datetime.timestamp(datetime.now())
|
| 78 |
async with client.stream('POST', url, headers=headers, json=payload) as response:
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
content = json_data.get('text', '')
|
| 106 |
-
content = "\n".join(content.split("\\n"))
|
| 107 |
sse_string = await generate_sse_response(timestamp, model, content)
|
|
|
|
| 108 |
yield sse_string
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
yield buffer
|
| 113 |
-
|
| 114 |
-
if engine == "gemini":
|
| 115 |
-
yield "data: [DONE]\n\n"
|
| 116 |
except httpx.ConnectError as e:
|
| 117 |
print(f"连接错误: {e}")
|
| 118 |
|
|
@@ -121,12 +116,11 @@ async def fetch_response(client, url, headers, payload):
|
|
| 121 |
return response.json()
|
| 122 |
|
| 123 |
async def fetch_response_stream(client, url, headers, payload, engine, model):
|
| 124 |
-
print(f"Engine: {engine}")
|
| 125 |
if engine == "gemini":
|
| 126 |
async for chunk in fetch_gemini_response_stream(client, url, headers, payload, model):
|
| 127 |
yield chunk
|
| 128 |
elif engine == "claude":
|
| 129 |
-
async for chunk in fetch_claude_response_stream(client, url, headers, payload,
|
| 130 |
yield chunk
|
| 131 |
elif engine == "gpt":
|
| 132 |
async for chunk in fetch_gpt_response_stream(client, url, headers, payload):
|
|
|
|
| 72 |
except httpx.ConnectError as e:
|
| 73 |
print(f"连接错误: {e}")
|
| 74 |
|
| 75 |
+
async def fetch_claude_response_stream(client, url, headers, payload, model):
|
| 76 |
try:
|
| 77 |
timestamp = datetime.timestamp(datetime.now())
|
| 78 |
async with client.stream('POST', url, headers=headers, json=payload) as response:
|
| 79 |
+
async for chunk in response.aiter_bytes():
|
| 80 |
+
chunk_line = chunk.decode('utf-8').split("\n")
|
| 81 |
+
for chunk in chunk_line:
|
| 82 |
+
if chunk.startswith("data:"):
|
| 83 |
+
line = chunk[6:]
|
| 84 |
+
# print(line)
|
| 85 |
+
resp: dict = json.loads(line)
|
| 86 |
+
message = resp.get("message")
|
| 87 |
+
if message:
|
| 88 |
+
tokens_use = resp.get("usage")
|
| 89 |
+
if tokens_use:
|
| 90 |
+
total_tokens = tokens_use["input_tokens"] + tokens_use["output_tokens"]
|
| 91 |
+
# print("\n\rtotal_tokens", total_tokens)
|
| 92 |
+
# tool_use = resp.get("content_block")
|
| 93 |
+
# if tool_use and "tool_use" == tool_use['type']:
|
| 94 |
+
# # print("tool_use", tool_use)
|
| 95 |
+
# tools_id = tool_use["id"]
|
| 96 |
+
# need_function_call = True
|
| 97 |
+
# if "name" in tool_use:
|
| 98 |
+
# function_call_name = tool_use["name"]
|
| 99 |
+
delta = resp.get("delta")
|
| 100 |
+
# print("delta", delta)
|
| 101 |
+
if not delta:
|
| 102 |
+
continue
|
| 103 |
+
if "text" in delta:
|
| 104 |
+
content = delta["text"]
|
|
|
|
|
|
|
| 105 |
sse_string = await generate_sse_response(timestamp, model, content)
|
| 106 |
+
print(sse_string)
|
| 107 |
yield sse_string
|
| 108 |
+
# if "partial_json" in delta:
|
| 109 |
+
# function_call_content = delta["partial_json"]
|
| 110 |
+
yield "data: [DONE]\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
except httpx.ConnectError as e:
|
| 112 |
print(f"连接错误: {e}")
|
| 113 |
|
|
|
|
| 116 |
return response.json()
|
| 117 |
|
| 118 |
async def fetch_response_stream(client, url, headers, payload, engine, model):
|
|
|
|
| 119 |
if engine == "gemini":
|
| 120 |
async for chunk in fetch_gemini_response_stream(client, url, headers, payload, model):
|
| 121 |
yield chunk
|
| 122 |
elif engine == "claude":
|
| 123 |
+
async for chunk in fetch_claude_response_stream(client, url, headers, payload, model):
|
| 124 |
yield chunk
|
| 125 |
elif engine == "gpt":
|
| 126 |
async for chunk in fetch_gpt_response_stream(client, url, headers, payload):
|