Update app.py
Browse files
app.py
CHANGED
|
@@ -1,44 +1,74 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
import torch
|
|
|
|
| 4 |
import faiss
|
| 5 |
-
import
|
| 6 |
|
| 7 |
from datasets import load_dataset
|
|
|
|
|
|
|
| 8 |
from transformers import (
|
| 9 |
AutoConfig,
|
| 10 |
-
AutoTokenizer,
|
| 11 |
AutoModelForCausalLM,
|
|
|
|
|
|
|
| 12 |
DataCollatorForLanguageModeling,
|
| 13 |
Trainer,
|
| 14 |
TrainingArguments,
|
| 15 |
pipeline,
|
| 16 |
-
BitsAndBytesConfig,
|
| 17 |
)
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
from sentence_transformers import SentenceTransformer
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
@spaces.GPU(duration=300)
|
| 29 |
-
def finetune_small_subset():
|
| 30 |
"""
|
| 31 |
Fine-tunes the custom R1 model on a small subset of the ServiceNow-AI/R1-Distill-SFT dataset.
|
|
|
|
| 32 |
Steps:
|
| 33 |
1) Loads the model from "wuhp/myr1" (using files from the "myr1" subfolder via trust_remote_code).
|
| 34 |
2) Applies 4-bit quantization and prepares for QLoRA training.
|
| 35 |
3) Fine-tunes on the dataset (mapping "problem" to prompt and "solution" to target).
|
| 36 |
4) Saves the LoRA adapter to "finetuned_myr1".
|
| 37 |
5) Reloads the adapter for inference.
|
|
|
|
|
|
|
|
|
|
| 38 |
"""
|
| 39 |
# Specify the configuration ("v0" or "v1") explicitly.
|
| 40 |
ds = load_dataset("ServiceNow-AI/R1-Distill-SFT", "v0", split="train")
|
| 41 |
-
ds = ds.select(range(min(
|
| 42 |
|
| 43 |
bnb_config = BitsAndBytesConfig(
|
| 44 |
load_in_4bit=True,
|
|
@@ -48,26 +78,8 @@ def finetune_small_subset():
|
|
| 48 |
)
|
| 49 |
|
| 50 |
# Load the custom model configuration from the repository.
|
| 51 |
-
|
| 52 |
-
"wuhp/myr1",
|
| 53 |
-
subfolder="myr1",
|
| 54 |
-
trust_remote_code=True,
|
| 55 |
-
)
|
| 56 |
-
# (Optionally apply local overrides here if needed.)
|
| 57 |
-
|
| 58 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 59 |
-
"wuhp/myr1",
|
| 60 |
-
subfolder="myr1",
|
| 61 |
-
trust_remote_code=True
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 65 |
-
"wuhp/myr1",
|
| 66 |
-
subfolder="myr1",
|
| 67 |
-
config=base_config,
|
| 68 |
-
quantization_config=bnb_config,
|
| 69 |
-
device_map="auto",
|
| 70 |
-
trust_remote_code=True
|
| 71 |
)
|
| 72 |
|
| 73 |
base_model = prepare_model_for_kbit_training(base_model)
|
|
@@ -100,8 +112,8 @@ def finetune_small_subset():
|
|
| 100 |
per_device_train_batch_size=1,
|
| 101 |
gradient_accumulation_steps=2,
|
| 102 |
logging_steps=5,
|
| 103 |
-
save_steps=999999,
|
| 104 |
-
save_total_limit=1,
|
| 105 |
fp16=False,
|
| 106 |
)
|
| 107 |
|
|
@@ -116,13 +128,8 @@ def finetune_small_subset():
|
|
| 116 |
trainer.model.save_pretrained("finetuned_myr1")
|
| 117 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 118 |
|
| 119 |
-
base_model_2 =
|
| 120 |
-
"wuhp/myr1",
|
| 121 |
-
subfolder="myr1",
|
| 122 |
-
config=base_config,
|
| 123 |
-
quantization_config=bnb_config,
|
| 124 |
-
device_map="auto",
|
| 125 |
-
trust_remote_code=True
|
| 126 |
)
|
| 127 |
base_model_2 = prepare_model_for_kbit_training(base_model_2)
|
| 128 |
|
|
@@ -132,13 +139,17 @@ def finetune_small_subset():
|
|
| 132 |
)
|
| 133 |
|
| 134 |
global TEXT_PIPELINE
|
| 135 |
-
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=
|
| 136 |
|
| 137 |
return "Finetuning complete. Model loaded for inference."
|
| 138 |
|
| 139 |
-
|
|
|
|
| 140 |
"""
|
| 141 |
Loads the base model (without LoRA) if no fine-tuned model is available.
|
|
|
|
|
|
|
|
|
|
| 142 |
"""
|
| 143 |
global TEXT_PIPELINE
|
| 144 |
if TEXT_PIPELINE is None:
|
|
@@ -148,22 +159,19 @@ def ensure_pipeline():
|
|
| 148 |
bnb_4bit_use_double_quant=True,
|
| 149 |
bnb_4bit_quant_type="nf4",
|
| 150 |
)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 154 |
-
"wuhp/myr1",
|
| 155 |
-
subfolder="myr1",
|
| 156 |
-
config=base_config,
|
| 157 |
-
quantization_config=bnb_config,
|
| 158 |
-
device_map="auto",
|
| 159 |
-
trust_remote_code=True
|
| 160 |
)
|
| 161 |
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
|
| 162 |
return TEXT_PIPELINE
|
| 163 |
|
| 164 |
-
|
|
|
|
| 165 |
"""
|
| 166 |
Loads the official R1 model pipeline if not already loaded.
|
|
|
|
|
|
|
|
|
|
| 167 |
"""
|
| 168 |
global COMPARISON_PIPELINE
|
| 169 |
if COMPARISON_PIPELINE is None:
|
|
@@ -177,10 +185,27 @@ def ensure_comparison_pipeline():
|
|
| 177 |
COMPARISON_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 178 |
return COMPARISON_PIPELINE
|
| 179 |
|
|
|
|
| 180 |
@spaces.GPU(duration=120)
|
| 181 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
"""
|
| 183 |
Direct generation without retrieval using the custom R1 model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
"""
|
| 185 |
pipe = ensure_pipeline()
|
| 186 |
out = pipe(
|
|
@@ -193,10 +218,27 @@ def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
|
| 193 |
)
|
| 194 |
return out[0]["generated_text"]
|
| 195 |
|
|
|
|
| 196 |
@spaces.GPU(duration=120)
|
| 197 |
-
def compare_models(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
"""
|
| 199 |
Compare outputs between your custom R1 model and the official R1 model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
"""
|
| 201 |
local_pipe = ensure_pipeline()
|
| 202 |
comp_pipe = ensure_comparison_pipeline()
|
|
@@ -219,11 +261,22 @@ def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
|
| 219 |
)
|
| 220 |
return local_out[0]["generated_text"], comp_out[0]["generated_text"]
|
| 221 |
|
|
|
|
| 222 |
class ConversationRetriever:
|
| 223 |
"""
|
| 224 |
A FAISS-based retriever using SentenceTransformer for embedding.
|
|
|
|
|
|
|
|
|
|
| 225 |
"""
|
| 226 |
-
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2", embed_dim=384):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
self.embed_model = SentenceTransformer(model_name)
|
| 228 |
self.embed_dim = embed_dim
|
| 229 |
self.index = faiss.IndexFlatL2(embed_dim)
|
|
@@ -232,7 +285,13 @@ class ConversationRetriever:
|
|
| 232 |
self.ids = []
|
| 233 |
self.id_counter = 0
|
| 234 |
|
| 235 |
-
def add_text(self, text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
if not text.strip():
|
| 237 |
return
|
| 238 |
emb = self.embed_model.encode([text], convert_to_numpy=True)
|
|
@@ -243,7 +302,17 @@ class ConversationRetriever:
|
|
| 243 |
self.ids.append(self.id_counter)
|
| 244 |
self.id_counter += 1
|
| 245 |
|
| 246 |
-
def search(self, query, top_k=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
q_emb = self.embed_model.encode([query], convert_to_numpy=True).astype(np.float32)
|
| 248 |
q_vec = q_emb[0].reshape(1, -1)
|
| 249 |
distances, indices = self.index.search(q_vec, top_k)
|
|
@@ -253,11 +322,20 @@ class ConversationRetriever:
|
|
| 253 |
results.append((self.texts[idx], dist))
|
| 254 |
return results
|
| 255 |
|
|
|
|
| 256 |
retriever = ConversationRetriever()
|
| 257 |
|
| 258 |
-
|
|
|
|
| 259 |
"""
|
| 260 |
Builds a prompt for retrieval-augmented generation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
"""
|
| 262 |
context_str = ""
|
| 263 |
for i, (chunk, dist) in enumerate(retrieved_chunks):
|
|
@@ -269,10 +347,29 @@ def build_rag_prompt(user_query, retrieved_chunks):
|
|
| 269 |
)
|
| 270 |
return prompt
|
| 271 |
|
|
|
|
| 272 |
@spaces.GPU(duration=120)
|
| 273 |
-
def chat_rag(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
"""
|
| 275 |
-
Chat with retrieval augmentation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
"""
|
| 277 |
pipe = ensure_pipeline()
|
| 278 |
retriever.add_text(f"User: {user_input}")
|
|
@@ -297,6 +394,7 @@ def chat_rag(user_input, history, temperature, top_p, min_new_tokens, max_new_to
|
|
| 297 |
history.append([user_input, assistant_reply])
|
| 298 |
return history, history
|
| 299 |
|
|
|
|
| 300 |
# Build the Gradio interface.
|
| 301 |
with gr.Blocks() as demo:
|
| 302 |
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
|
|
@@ -351,4 +449,4 @@ with gr.Blocks() as demo:
|
|
| 351 |
outputs=[chat_state, chatbot]
|
| 352 |
)
|
| 353 |
|
| 354 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
import torch
|
| 4 |
+
|
| 5 |
import faiss
|
| 6 |
+
import spaces
|
| 7 |
|
| 8 |
from datasets import load_dataset
|
| 9 |
+
from peft import LoraConfig, PeftModel, TaskType, get_peft_model, prepare_model_for_kbit_training
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
from transformers import (
|
| 12 |
AutoConfig,
|
|
|
|
| 13 |
AutoModelForCausalLM,
|
| 14 |
+
AutoTokenizer,
|
| 15 |
+
BitsAndBytesConfig,
|
| 16 |
DataCollatorForLanguageModeling,
|
| 17 |
Trainer,
|
| 18 |
TrainingArguments,
|
| 19 |
pipeline,
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
+
NUM_EXAMPLES_FOR_FINETUNING = 50 # Constant for the number of examples to use for finetuning
|
| 23 |
+
TEXT_PIPELINE = None # Global to store the custom R1 text generation pipeline
|
| 24 |
+
COMPARISON_PIPELINE = None # Global to store the official R1 text generation pipeline
|
| 25 |
|
|
|
|
| 26 |
|
| 27 |
+
def _load_model_and_tokenizer(model_name: str, subfolder: str = None, quantization_config: BitsAndBytesConfig = None, device_map: str = "auto", trust_remote_code: bool = True) -> tuple[AutoModelForCausalLM, AutoTokenizer]:
|
| 28 |
+
"""
|
| 29 |
+
Helper function to load a causal language model and its tokenizer.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
model_name (str): The name or path of the pretrained model.
|
| 33 |
+
subfolder (str, optional): Subfolder within the model repository. Defaults to None.
|
| 34 |
+
quantization_config (BitsAndBytesConfig, optional): Configuration for quantization. Defaults to None.
|
| 35 |
+
device_map (str, optional): Device mapping for model loading. Defaults to "auto".
|
| 36 |
+
trust_remote_code (bool, optional): Trust remote code for custom models. Defaults to True.
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
tuple[AutoModelForCausalLM, AutoTokenizer]: The loaded model and tokenizer.
|
| 40 |
+
"""
|
| 41 |
+
config = AutoConfig.from_pretrained(model_name, subfolder=subfolder, trust_remote_code=trust_remote_code)
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder=subfolder, trust_remote_code=trust_remote_code)
|
| 43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
model_name,
|
| 45 |
+
subfolder=subfolder,
|
| 46 |
+
config=config,
|
| 47 |
+
quantization_config=quantization_config,
|
| 48 |
+
device_map=device_map,
|
| 49 |
+
trust_remote_code=trust_remote_code
|
| 50 |
+
)
|
| 51 |
+
return model, tokenizer
|
| 52 |
+
|
| 53 |
|
| 54 |
@spaces.GPU(duration=300)
|
| 55 |
+
def finetune_small_subset() -> str:
|
| 56 |
"""
|
| 57 |
Fine-tunes the custom R1 model on a small subset of the ServiceNow-AI/R1-Distill-SFT dataset.
|
| 58 |
+
|
| 59 |
Steps:
|
| 60 |
1) Loads the model from "wuhp/myr1" (using files from the "myr1" subfolder via trust_remote_code).
|
| 61 |
2) Applies 4-bit quantization and prepares for QLoRA training.
|
| 62 |
3) Fine-tunes on the dataset (mapping "problem" to prompt and "solution" to target).
|
| 63 |
4) Saves the LoRA adapter to "finetuned_myr1".
|
| 64 |
5) Reloads the adapter for inference.
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
str: A message indicating finetuning completion.
|
| 68 |
"""
|
| 69 |
# Specify the configuration ("v0" or "v1") explicitly.
|
| 70 |
ds = load_dataset("ServiceNow-AI/R1-Distill-SFT", "v0", split="train")
|
| 71 |
+
ds = ds.select(range(min(NUM_EXAMPLES_FOR_FINETUNING, len(ds))))
|
| 72 |
|
| 73 |
bnb_config = BitsAndBytesConfig(
|
| 74 |
load_in_4bit=True,
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
# Load the custom model configuration from the repository.
|
| 81 |
+
base_model, tokenizer = _load_model_and_tokenizer(
|
| 82 |
+
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
|
| 85 |
base_model = prepare_model_for_kbit_training(base_model)
|
|
|
|
| 112 |
per_device_train_batch_size=1,
|
| 113 |
gradient_accumulation_steps=2,
|
| 114 |
logging_steps=5,
|
| 115 |
+
save_steps=999999, # Save infrequently to avoid filling up disk during demo
|
| 116 |
+
save_total_limit=1, # Keep only the last saved checkpoint
|
| 117 |
fp16=False,
|
| 118 |
)
|
| 119 |
|
|
|
|
| 128 |
trainer.model.save_pretrained("finetuned_myr1")
|
| 129 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 130 |
|
| 131 |
+
base_model_2, tokenizer_2 = _load_model_and_tokenizer( # Re-load base model for inference adapter application
|
| 132 |
+
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
)
|
| 134 |
base_model_2 = prepare_model_for_kbit_training(base_model_2)
|
| 135 |
|
|
|
|
| 139 |
)
|
| 140 |
|
| 141 |
global TEXT_PIPELINE
|
| 142 |
+
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer_2) # Use tokenizer_2 here to be consistent
|
| 143 |
|
| 144 |
return "Finetuning complete. Model loaded for inference."
|
| 145 |
|
| 146 |
+
|
| 147 |
+
def ensure_pipeline() -> pipeline:
|
| 148 |
"""
|
| 149 |
Loads the base model (without LoRA) if no fine-tuned model is available.
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
pipeline: The text generation pipeline using the custom R1 model.
|
| 153 |
"""
|
| 154 |
global TEXT_PIPELINE
|
| 155 |
if TEXT_PIPELINE is None:
|
|
|
|
| 159 |
bnb_4bit_use_double_quant=True,
|
| 160 |
bnb_4bit_quant_type="nf4",
|
| 161 |
)
|
| 162 |
+
base_model, tokenizer = _load_model_and_tokenizer(
|
| 163 |
+
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
)
|
| 165 |
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
|
| 166 |
return TEXT_PIPELINE
|
| 167 |
|
| 168 |
+
|
| 169 |
+
def ensure_comparison_pipeline() -> pipeline:
|
| 170 |
"""
|
| 171 |
Loads the official R1 model pipeline if not already loaded.
|
| 172 |
+
|
| 173 |
+
Returns:
|
| 174 |
+
pipeline: The text generation pipeline using the official R1 model.
|
| 175 |
"""
|
| 176 |
global COMPARISON_PIPELINE
|
| 177 |
if COMPARISON_PIPELINE is None:
|
|
|
|
| 185 |
COMPARISON_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 186 |
return COMPARISON_PIPELINE
|
| 187 |
|
| 188 |
+
|
| 189 |
@spaces.GPU(duration=120)
|
| 190 |
+
def predict(
|
| 191 |
+
prompt: str,
|
| 192 |
+
temperature: float,
|
| 193 |
+
top_p: float,
|
| 194 |
+
min_new_tokens: int,
|
| 195 |
+
max_new_tokens: int
|
| 196 |
+
) -> str:
|
| 197 |
"""
|
| 198 |
Direct generation without retrieval using the custom R1 model.
|
| 199 |
+
|
| 200 |
+
Args:
|
| 201 |
+
prompt (str): The input prompt for text generation.
|
| 202 |
+
temperature (float): Sampling temperature.
|
| 203 |
+
top_p (float): Top-p sampling probability.
|
| 204 |
+
min_new_tokens (int): Minimum number of new tokens to generate.
|
| 205 |
+
max_new_tokens (int): Maximum number of new tokens to generate.
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
str: The generated text output.
|
| 209 |
"""
|
| 210 |
pipe = ensure_pipeline()
|
| 211 |
out = pipe(
|
|
|
|
| 218 |
)
|
| 219 |
return out[0]["generated_text"]
|
| 220 |
|
| 221 |
+
|
| 222 |
@spaces.GPU(duration=120)
|
| 223 |
+
def compare_models(
|
| 224 |
+
prompt: str,
|
| 225 |
+
temperature: float,
|
| 226 |
+
top_p: float,
|
| 227 |
+
min_new_tokens: int,
|
| 228 |
+
max_new_tokens: int
|
| 229 |
+
) -> tuple[str, str]:
|
| 230 |
"""
|
| 231 |
Compare outputs between your custom R1 model and the official R1 model.
|
| 232 |
+
|
| 233 |
+
Args:
|
| 234 |
+
prompt (str): The input prompt for text generation.
|
| 235 |
+
temperature (float): Sampling temperature.
|
| 236 |
+
top_p (float): Top-p sampling probability.
|
| 237 |
+
min_new_tokens (int): Minimum number of new tokens to generate.
|
| 238 |
+
max_new_tokens (int): Maximum number of new tokens to generate.
|
| 239 |
+
|
| 240 |
+
Returns:
|
| 241 |
+
tuple[str, str]: A tuple containing the generated text from the custom R1 and official R1 models.
|
| 242 |
"""
|
| 243 |
local_pipe = ensure_pipeline()
|
| 244 |
comp_pipe = ensure_comparison_pipeline()
|
|
|
|
| 261 |
)
|
| 262 |
return local_out[0]["generated_text"], comp_out[0]["generated_text"]
|
| 263 |
|
| 264 |
+
|
| 265 |
class ConversationRetriever:
|
| 266 |
"""
|
| 267 |
A FAISS-based retriever using SentenceTransformer for embedding.
|
| 268 |
+
|
| 269 |
+
This class indexes text chunks using FAISS and SentenceTransformer embeddings
|
| 270 |
+
to enable efficient similarity search for retrieval-augmented generation.
|
| 271 |
"""
|
| 272 |
+
def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", embed_dim: int = 384):
|
| 273 |
+
"""
|
| 274 |
+
Initializes the ConversationRetriever.
|
| 275 |
+
|
| 276 |
+
Args:
|
| 277 |
+
model_name (str, optional): Name of the SentenceTransformer model. Defaults to "sentence-transformers/all-MiniLM-L6-v2".
|
| 278 |
+
embed_dim (int, optional): Dimensionality of the embeddings. Defaults to 384.
|
| 279 |
+
"""
|
| 280 |
self.embed_model = SentenceTransformer(model_name)
|
| 281 |
self.embed_dim = embed_dim
|
| 282 |
self.index = faiss.IndexFlatL2(embed_dim)
|
|
|
|
| 285 |
self.ids = []
|
| 286 |
self.id_counter = 0
|
| 287 |
|
| 288 |
+
def add_text(self, text: str):
|
| 289 |
+
"""
|
| 290 |
+
Adds text to the retriever's index.
|
| 291 |
+
|
| 292 |
+
Args:
|
| 293 |
+
text (str): The text to add.
|
| 294 |
+
"""
|
| 295 |
if not text.strip():
|
| 296 |
return
|
| 297 |
emb = self.embed_model.encode([text], convert_to_numpy=True)
|
|
|
|
| 302 |
self.ids.append(self.id_counter)
|
| 303 |
self.id_counter += 1
|
| 304 |
|
| 305 |
+
def search(self, query: str, top_k: int = 3) -> list[tuple[str, float]]:
|
| 306 |
+
"""
|
| 307 |
+
Searches the retriever index for texts similar to the query.
|
| 308 |
+
|
| 309 |
+
Args:
|
| 310 |
+
query (str): The query text.
|
| 311 |
+
top_k (int, optional): Number of top results to retrieve. Defaults to 3.
|
| 312 |
+
|
| 313 |
+
Returns:
|
| 314 |
+
list[tuple[str, float]]: A list of tuples, where each tuple contains (text, distance).
|
| 315 |
+
"""
|
| 316 |
q_emb = self.embed_model.encode([query], convert_to_numpy=True).astype(np.float32)
|
| 317 |
q_vec = q_emb[0].reshape(1, -1)
|
| 318 |
distances, indices = self.index.search(q_vec, top_k)
|
|
|
|
| 322 |
results.append((self.texts[idx], dist))
|
| 323 |
return results
|
| 324 |
|
| 325 |
+
|
| 326 |
retriever = ConversationRetriever()
|
| 327 |
|
| 328 |
+
|
| 329 |
+
def build_rag_prompt(user_query: str, retrieved_chunks: list[tuple[str, float]]) -> str:
|
| 330 |
"""
|
| 331 |
Builds a prompt for retrieval-augmented generation.
|
| 332 |
+
|
| 333 |
+
Args:
|
| 334 |
+
user_query (str): The user's input query.
|
| 335 |
+
retrieved_chunks (list[tuple[str, float]]): List of retrieved text chunks and their distances.
|
| 336 |
+
|
| 337 |
+
Returns:
|
| 338 |
+
str: The formatted prompt string.
|
| 339 |
"""
|
| 340 |
context_str = ""
|
| 341 |
for i, (chunk, dist) in enumerate(retrieved_chunks):
|
|
|
|
| 347 |
)
|
| 348 |
return prompt
|
| 349 |
|
| 350 |
+
|
| 351 |
@spaces.GPU(duration=120)
|
| 352 |
+
def chat_rag(
|
| 353 |
+
user_input: str,
|
| 354 |
+
history: list[list[str]],
|
| 355 |
+
temperature: float,
|
| 356 |
+
top_p: float,
|
| 357 |
+
min_new_tokens: int,
|
| 358 |
+
max_new_tokens: int
|
| 359 |
+
) -> tuple[list[list[str]], list[list[str]]]:
|
| 360 |
"""
|
| 361 |
+
Chat with retrieval augmentation using the custom R1 model.
|
| 362 |
+
|
| 363 |
+
Args:
|
| 364 |
+
user_input (str): The user's chat input.
|
| 365 |
+
history (list[list[str]]): The chat history.
|
| 366 |
+
temperature (float): Sampling temperature.
|
| 367 |
+
top_p (float): Top-p sampling probability.
|
| 368 |
+
min_new_tokens (int): Minimum number of new tokens to generate.
|
| 369 |
+
max_new_tokens (int): Maximum number of new tokens to generate.
|
| 370 |
+
|
| 371 |
+
Returns:
|
| 372 |
+
tuple[list[list[str]], list[list[str]]]: Updated chat history and chatbot display history.
|
| 373 |
"""
|
| 374 |
pipe = ensure_pipeline()
|
| 375 |
retriever.add_text(f"User: {user_input}")
|
|
|
|
| 394 |
history.append([user_input, assistant_reply])
|
| 395 |
return history, history
|
| 396 |
|
| 397 |
+
|
| 398 |
# Build the Gradio interface.
|
| 399 |
with gr.Blocks() as demo:
|
| 400 |
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
|
|
|
|
| 449 |
outputs=[chat_state, chatbot]
|
| 450 |
)
|
| 451 |
|
| 452 |
+
demo.launch()
|