Update app.py
Browse files
app.py
CHANGED
|
@@ -1,227 +1,180 @@
|
|
| 1 |
-
|
| 2 |
-
import re
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
DEFAULT_API_KEY = "AIzaSyBbK-1P3JD6HPyE3QLhkOps6_-Xo3wUFbs"
|
|
|
|
| 5 |
INTERNAL_MODEL_MAP = {
|
| 6 |
"Gemini 2.5 Flash": "gemini-2.5-flash",
|
| 7 |
"Gemini 2.5 Pro": "gemini-2.5-pro",
|
| 8 |
}
|
|
|
|
|
|
|
| 9 |
PROMPT_FREIGHT_JSON = """
|
| 10 |
Please analyze the freight rate table in the file I provide and convert it into JSON in the following structure:
|
| 11 |
{
|
| 12 |
"shipping_line": "...",
|
| 13 |
"shipping_line_code": "...",
|
| 14 |
-
"shipping_line_reason": "Why this carrier is chosen?",
|
| 15 |
"fee_type": "Air Freight",
|
| 16 |
"valid_from": ...,
|
| 17 |
"valid_to": ...,
|
| 18 |
-
"charges": [
|
| 19 |
-
|
| 20 |
-
"frequency": "...",
|
| 21 |
-
"package_type": "...",
|
| 22 |
-
"aircraft_type": "...",
|
| 23 |
-
"direction": "Export or Import or null",
|
| 24 |
-
"origin": "...",
|
| 25 |
-
"destination": "...",
|
| 26 |
-
"charge_name": "...",
|
| 27 |
-
"charge_code": "...",
|
| 28 |
-
"charge_code_reason": "...",
|
| 29 |
-
"cargo_type": "...",
|
| 30 |
-
"currency": "...",
|
| 31 |
-
"transit": "...",
|
| 32 |
-
"transit_time": "...",
|
| 33 |
-
"weight_breaks": {
|
| 34 |
-
"M": ...,
|
| 35 |
-
"N": ...,
|
| 36 |
-
"+45kg": ...,
|
| 37 |
-
"+100kg": ...,
|
| 38 |
-
"+300kg": ...,
|
| 39 |
-
"+500kg": ...,
|
| 40 |
-
"+1000kg": ...,
|
| 41 |
-
"other": {
|
| 42 |
-
key: value
|
| 43 |
-
},
|
| 44 |
-
"weight_breaks_reason":"Why chosen weight_breaks?"
|
| 45 |
-
},
|
| 46 |
-
"remark": "..."
|
| 47 |
-
}
|
| 48 |
-
],
|
| 49 |
-
"local_charges": [
|
| 50 |
-
{
|
| 51 |
-
"charge_name": "...",
|
| 52 |
-
"charge_code": "...",
|
| 53 |
-
"unit": "...",
|
| 54 |
-
"amount": ...,
|
| 55 |
-
"remark": "..."
|
| 56 |
-
}
|
| 57 |
-
]
|
| 58 |
}
|
| 59 |
### Date rules
|
| 60 |
-
- valid_from
|
| 61 |
-
|
| 62 |
-
- `01/MM/YYYY` (if month+year only)
|
| 63 |
-
- `01/01/YYYY` (if year only)
|
| 64 |
-
- `UFN` if missing
|
| 65 |
-
- valid_to:
|
| 66 |
-
- exact `DD/MM/YYYY` if present
|
| 67 |
-
- else `UFN`
|
| 68 |
STRICT RULES:
|
| 69 |
-
-
|
| 70 |
-
- All rates must
|
| 71 |
-
-
|
| 72 |
-
-
|
| 73 |
-
-
|
| 74 |
-
- Flight number (e.g. ZH118) is not charge code.
|
| 75 |
-
- Frequency: D[1-7]; 'Daily' = D1234567. Join multiple (e.g. D3,D4→D34).
|
| 76 |
-
- If local charges exist, list them.
|
| 77 |
-
- If validity missing, set null.
|
| 78 |
-
- Direction: Export if origin is Vietnam (SGN, HAN, DAD...), else Import.
|
| 79 |
-
- Provide short plain English reasons for "shipping_line_reason" & "charge_code_reason".
|
| 80 |
-
- Replace commas in remarks with semicolons.
|
| 81 |
-
- Only return JSON.
|
| 82 |
"""
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
def _read_file_bytes(upload):
|
| 86 |
-
if
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
return upload.read()
|
| 90 |
-
raise TypeError("Unsupported file
|
| 91 |
|
| 92 |
-
def _guess_name_and_mime(file, file_bytes):
|
| 93 |
filename = os.path.basename(file.name if hasattr(file, "name") else str(file))
|
| 94 |
mime, _ = mimetypes.guess_type(filename)
|
| 95 |
-
if not mime and file_bytes[:4] == b"%PDF":
|
|
|
|
| 96 |
return filename, mime or "application/octet-stream"
|
| 97 |
|
| 98 |
-
def check_pdf_structure(file_bytes: bytes) -> bool:
|
| 99 |
-
try:
|
| 100 |
-
with pdfplumber.open(io.BytesIO(file_bytes)) as pdf:
|
| 101 |
-
if len(pdf.pages) <= 2: return False
|
| 102 |
-
for page in pdf.pages[:3]:
|
| 103 |
-
if page.find_tables(): return True
|
| 104 |
-
return False
|
| 105 |
-
except Exception as e:
|
| 106 |
-
print("PDF check error:", e); return False
|
| 107 |
-
|
| 108 |
-
# ========== 1️⃣ Extract bảng bằng Camelot ==========
|
| 109 |
def extract_pdf_tables(file_path: str) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
all_dfs = []
|
|
|
|
|
|
|
| 111 |
try:
|
| 112 |
-
print("🔍
|
| 113 |
tables = camelot.read_pdf(file_path, flavor="lattice", pages="all")
|
| 114 |
-
if tables.n > 0:
|
| 115 |
-
for t in tables:
|
| 116 |
-
|
|
|
|
| 117 |
except Exception as e:
|
| 118 |
-
print(f"⚠️ Lattice
|
| 119 |
|
|
|
|
| 120 |
if not all_dfs:
|
| 121 |
try:
|
| 122 |
-
print("🔁
|
| 123 |
tables = camelot.read_pdf(file_path, flavor="stream", pages="all")
|
| 124 |
-
if tables.n > 0:
|
| 125 |
-
for t in tables:
|
| 126 |
-
|
|
|
|
| 127 |
except Exception as e:
|
| 128 |
-
print(f"❌ Stream
|
| 129 |
|
| 130 |
if not all_dfs:
|
| 131 |
-
print("🚫
|
| 132 |
return pd.DataFrame()
|
| 133 |
|
|
|
|
| 134 |
df_final = pd.concat(all_dfs, ignore_index=True)
|
|
|
|
|
|
|
| 135 |
if all(str(c).isdigit() for c in df_final.columns):
|
| 136 |
-
print("🧠 Detected numeric headers (0,1,2..), using first row as real header.")
|
| 137 |
df_final.columns = df_final.iloc[0]
|
| 138 |
df_final = df_final[1:]
|
|
|
|
| 139 |
df_final = df_final.dropna(how="all").reset_index(drop=True)
|
| 140 |
-
print(f"✅
|
| 141 |
return df_final
|
| 142 |
|
| 143 |
-
|
| 144 |
-
def extract_pdf_note(file_bytes: bytes) -> str:
|
| 145 |
"""
|
| 146 |
-
|
| 147 |
-
|
| 148 |
"""
|
| 149 |
try:
|
| 150 |
-
with pdfplumber.open(
|
| 151 |
-
|
| 152 |
-
text =
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
if re.search(r"(Start Date|Origin|Expiry|Product|MY|SC|All rates|Currency)", line, re.I):
|
| 158 |
-
note_lines.append(line.strip())
|
| 159 |
-
note_text = " ".join(note_lines)
|
| 160 |
-
return note_text.strip()
|
| 161 |
except Exception as e:
|
| 162 |
-
print(f"⚠️
|
| 163 |
return ""
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
api_key = os.environ.get("GOOGLE_API_KEY", DEFAULT_API_KEY)
|
| 168 |
genai.configure(api_key=api_key)
|
| 169 |
model = genai.GenerativeModel(
|
| 170 |
model_name=INTERNAL_MODEL_MAP.get(model_choice, "gemini-2.5-flash"),
|
| 171 |
generation_config={"temperature": temperature, "top_p": top_p}
|
| 172 |
)
|
| 173 |
-
prompt = f"
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
{note_text or '[No notes detected]'}
|
| 177 |
-
CSV:
|
| 178 |
-
{csv_text}
|
| 179 |
-
→ Convert to valid JSON as per schema above.
|
| 180 |
-
"""
|
| 181 |
-
resp = model.generate_content(prompt)
|
| 182 |
-
return getattr(resp, "text", str(resp))
|
| 183 |
|
| 184 |
-
#
|
| 185 |
def run_process(file, question, model_choice, temperature, top_p, external_api_url):
|
| 186 |
try:
|
| 187 |
if file is None:
|
| 188 |
return "❌ No file uploaded.", None
|
|
|
|
| 189 |
file_bytes = _read_file_bytes(file)
|
| 190 |
filename, mime = _guess_name_and_mime(file, file_bytes)
|
| 191 |
print(f"[UPLOAD] {filename} ({mime})")
|
| 192 |
|
| 193 |
-
if mime == "application/pdf"
|
| 194 |
-
|
| 195 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 196 |
tmp.write(file_bytes)
|
| 197 |
tmp_path = tmp.name
|
| 198 |
|
|
|
|
| 199 |
df = extract_pdf_tables(tmp_path)
|
|
|
|
|
|
|
| 200 |
if not df.empty:
|
| 201 |
-
note_text = extract_pdf_note(file_bytes)
|
| 202 |
csv_text = df.to_csv(index=False)
|
| 203 |
-
print("✅
|
| 204 |
-
message = call_gemini_with_prompt(csv_text, note_text, model_choice, temperature, top_p)
|
| 205 |
return message, None
|
| 206 |
else:
|
| 207 |
-
print("⚠️
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
model = genai.GenerativeModel(
|
| 213 |
-
model_name=INTERNAL_MODEL_MAP.get(model_choice, "gemini-2.5-flash"),
|
| 214 |
-
generation_config={"temperature": temperature, "top_p": top_p}
|
| 215 |
-
)
|
| 216 |
-
uploaded = genai.upload_file(path=file.name)
|
| 217 |
-
resp = model.generate_content([PROMPT_FREIGHT_JSON, uploaded])
|
| 218 |
-
genai.delete_file(uploaded.name)
|
| 219 |
-
return getattr(resp, "text", str(resp)), None
|
| 220 |
|
| 221 |
except Exception as e:
|
| 222 |
return f"ERROR: {type(e).__name__}: {e}", None
|
| 223 |
|
| 224 |
-
|
| 225 |
def main():
|
| 226 |
with gr.Blocks(title="OCR Multi-Agent System") as demo:
|
| 227 |
file = gr.File(label="Upload PDF/Image")
|
|
@@ -242,9 +195,8 @@ def main():
|
|
| 242 |
|
| 243 |
return demo
|
| 244 |
|
|
|
|
| 245 |
demo = main()
|
| 246 |
|
| 247 |
if __name__ == "__main__":
|
| 248 |
-
|
| 249 |
-
os.system("which gs || echo '⚠️ ghostscript (gs) not found in PATH'")
|
| 250 |
-
demo.launch()
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import os, io, re, json, time, mimetypes, tempfile
|
| 3 |
+
from typing import List, Union, Tuple, Any
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import pandas as pd
|
| 6 |
import gradio as gr
|
| 7 |
+
import google.generativeai as genai
|
| 8 |
+
import requests
|
| 9 |
+
import fitz # PyMuPDF
|
| 10 |
+
import camelot
|
| 11 |
+
import pdfplumber
|
| 12 |
+
|
| 13 |
+
# ================== CONFIG ==================
|
| 14 |
DEFAULT_API_KEY = "AIzaSyBbK-1P3JD6HPyE3QLhkOps6_-Xo3wUFbs"
|
| 15 |
+
|
| 16 |
INTERNAL_MODEL_MAP = {
|
| 17 |
"Gemini 2.5 Flash": "gemini-2.5-flash",
|
| 18 |
"Gemini 2.5 Pro": "gemini-2.5-pro",
|
| 19 |
}
|
| 20 |
+
EXTERNAL_MODEL_NAME = "prithivMLmods/Camel-Doc-OCR-062825 (External)"
|
| 21 |
+
|
| 22 |
PROMPT_FREIGHT_JSON = """
|
| 23 |
Please analyze the freight rate table in the file I provide and convert it into JSON in the following structure:
|
| 24 |
{
|
| 25 |
"shipping_line": "...",
|
| 26 |
"shipping_line_code": "...",
|
|
|
|
| 27 |
"fee_type": "Air Freight",
|
| 28 |
"valid_from": ...,
|
| 29 |
"valid_to": ...,
|
| 30 |
+
"charges": [...],
|
| 31 |
+
"local_charges": [...]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
}
|
| 33 |
### Date rules
|
| 34 |
+
- valid_from: DD/MM/YYYY, 01/MM/YYYY, 01/01/YYYY or 'UFN'
|
| 35 |
+
- valid_to: DD/MM/YYYY or 'UFN'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
STRICT RULES:
|
| 37 |
+
- Only return JSON, no explanation.
|
| 38 |
+
- All rates must match the weight break columns (M,N,45kg,100kg,...).
|
| 39 |
+
- Use IATA code for origin/destination.
|
| 40 |
+
- Direction: Export if origin in Vietnam, else Import.
|
| 41 |
+
- Combine with “notes” at bottom of PDF if relevant.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
"""
|
| 43 |
|
| 44 |
+
# ================== HELPERS ==================
|
| 45 |
+
def _read_file_bytes(upload: Union[str, os.PathLike, dict, object] | None) -> bytes:
|
| 46 |
+
if upload is None:
|
| 47 |
+
raise ValueError("No file uploaded.")
|
| 48 |
+
if isinstance(upload, (str, os.PathLike)):
|
| 49 |
+
with open(upload, "rb") as f:
|
| 50 |
+
return f.read()
|
| 51 |
+
if isinstance(upload, dict) and "path" in upload:
|
| 52 |
+
with open(upload["path"], "rb") as f:
|
| 53 |
+
return f.read()
|
| 54 |
+
if hasattr(upload, "read"):
|
| 55 |
return upload.read()
|
| 56 |
+
raise TypeError(f"Unsupported file object: {type(upload)}")
|
| 57 |
|
| 58 |
+
def _guess_name_and_mime(file, file_bytes: bytes) -> Tuple[str, str]:
|
| 59 |
filename = os.path.basename(file.name if hasattr(file, "name") else str(file))
|
| 60 |
mime, _ = mimetypes.guess_type(filename)
|
| 61 |
+
if not mime and file_bytes[:4] == b"%PDF":
|
| 62 |
+
mime = "application/pdf"
|
| 63 |
return filename, mime or "application/octet-stream"
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
def extract_pdf_tables(file_path: str) -> pd.DataFrame:
|
| 66 |
+
"""
|
| 67 |
+
Extract bảng PDF bằng Camelot:
|
| 68 |
+
- thử mode lattice (bảng có khung line)
|
| 69 |
+
- fallback stream (bảng không có line rõ)
|
| 70 |
+
Trả về DataFrame hợp nhất.
|
| 71 |
+
"""
|
| 72 |
all_dfs = []
|
| 73 |
+
|
| 74 |
+
# --- Thử lattice trước ---
|
| 75 |
try:
|
| 76 |
+
print("🔍 Thử extract bằng lattice...")
|
| 77 |
tables = camelot.read_pdf(file_path, flavor="lattice", pages="all")
|
| 78 |
+
if tables and tables.n > 0:
|
| 79 |
+
for t in tables:
|
| 80 |
+
all_dfs.append(t.df)
|
| 81 |
+
print(f"✅ Lattice: {tables.n} bảng phát hiện.")
|
| 82 |
except Exception as e:
|
| 83 |
+
print(f"⚠️ Lattice lỗi: {e}")
|
| 84 |
|
| 85 |
+
# --- Fallback stream ---
|
| 86 |
if not all_dfs:
|
| 87 |
try:
|
| 88 |
+
print("🔁 Thử extract bằng stream...")
|
| 89 |
tables = camelot.read_pdf(file_path, flavor="stream", pages="all")
|
| 90 |
+
if tables and tables.n > 0:
|
| 91 |
+
for t in tables:
|
| 92 |
+
all_dfs.append(t.df)
|
| 93 |
+
print(f"✅ Stream: {tables.n} bảng phát hiện.")
|
| 94 |
except Exception as e:
|
| 95 |
+
print(f"❌ Stream lỗi: {e}")
|
| 96 |
|
| 97 |
if not all_dfs:
|
| 98 |
+
print("🚫 Không phát hiện bảng nào.")
|
| 99 |
return pd.DataFrame()
|
| 100 |
|
| 101 |
+
# --- Hợp nhất tất cả bảng ---
|
| 102 |
df_final = pd.concat(all_dfs, ignore_index=True)
|
| 103 |
+
|
| 104 |
+
# Nếu header là 0,1,2,... → dùng dòng đầu làm header thật
|
| 105 |
if all(str(c).isdigit() for c in df_final.columns):
|
|
|
|
| 106 |
df_final.columns = df_final.iloc[0]
|
| 107 |
df_final = df_final[1:]
|
| 108 |
+
|
| 109 |
df_final = df_final.dropna(how="all").reset_index(drop=True)
|
| 110 |
+
print(f"✅ Tổng hợp {len(df_final)} dòng, {len(df_final.columns)} cột.")
|
| 111 |
return df_final
|
| 112 |
|
| 113 |
+
def extract_pdf_note(file_path: str) -> str:
|
|
|
|
| 114 |
"""
|
| 115 |
+
Dùng pdfplumber để lấy phần text cuối tài liệu (note, remark...).
|
| 116 |
+
Chỉ lấy từ 10 dòng cuối của trang cuối.
|
| 117 |
"""
|
| 118 |
try:
|
| 119 |
+
with pdfplumber.open(file_path) as pdf:
|
| 120 |
+
last_page = pdf.pages[-1]
|
| 121 |
+
text = (last_page.extract_text() or "").strip()
|
| 122 |
+
lines = text.splitlines()
|
| 123 |
+
note_text = "\n".join(lines[-12:]) # lấy ~12 dòng cuối
|
| 124 |
+
print("📝 Extracted note text thành công.")
|
| 125 |
+
return note_text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
except Exception as e:
|
| 127 |
+
print(f"⚠️ extract_pdf_note lỗi: {e}")
|
| 128 |
return ""
|
| 129 |
|
| 130 |
+
def call_gemini_with_prompt(content_text: str, note_text: str, question: str, model_choice: str, temperature: float, top_p: float):
|
| 131 |
+
"""Gửi bảng + note vào Gemini"""
|
| 132 |
api_key = os.environ.get("GOOGLE_API_KEY", DEFAULT_API_KEY)
|
| 133 |
genai.configure(api_key=api_key)
|
| 134 |
model = genai.GenerativeModel(
|
| 135 |
model_name=INTERNAL_MODEL_MAP.get(model_choice, "gemini-2.5-flash"),
|
| 136 |
generation_config={"temperature": temperature, "top_p": top_p}
|
| 137 |
)
|
| 138 |
+
prompt = f"{PROMPT_FREIGHT_JSON}\n\nBelow is the extracted CSV data:\n{content_text}\n\nBelow are the notes:\n{note_text}\n\n{question or ''}"
|
| 139 |
+
response = model.generate_content(prompt)
|
| 140 |
+
return getattr(response, "text", str(response))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# ================== MAIN ROUTER ==================
|
| 143 |
def run_process(file, question, model_choice, temperature, top_p, external_api_url):
|
| 144 |
try:
|
| 145 |
if file is None:
|
| 146 |
return "❌ No file uploaded.", None
|
| 147 |
+
|
| 148 |
file_bytes = _read_file_bytes(file)
|
| 149 |
filename, mime = _guess_name_and_mime(file, file_bytes)
|
| 150 |
print(f"[UPLOAD] {filename} ({mime})")
|
| 151 |
|
| 152 |
+
if mime == "application/pdf":
|
| 153 |
+
# Lưu file tạm để camelot đọc
|
| 154 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 155 |
tmp.write(file_bytes)
|
| 156 |
tmp_path = tmp.name
|
| 157 |
|
| 158 |
+
# 1️⃣ Extract bảng bằng Camelot
|
| 159 |
df = extract_pdf_tables(tmp_path)
|
| 160 |
+
note_text = extract_pdf_note(tmp_path)
|
| 161 |
+
|
| 162 |
if not df.empty:
|
|
|
|
| 163 |
csv_text = df.to_csv(index=False)
|
| 164 |
+
print("✅ Gửi Gemini để sinh JSON...")
|
| 165 |
+
message = call_gemini_with_prompt(csv_text, note_text, question, model_choice, temperature, top_p)
|
| 166 |
return message, None
|
| 167 |
else:
|
| 168 |
+
print("⚠️ Không có bảng hợp lệ, fallback OCR Gemini.")
|
| 169 |
+
return run_process_internal_base_v2(file_bytes, filename, mime, question, model_choice, temperature, top_p)
|
| 170 |
+
|
| 171 |
+
# Các loại file khác → OCR trực tiếp
|
| 172 |
+
return run_process_internal_base_v2(file_bytes, filename, mime, question, model_choice, temperature, top_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
except Exception as e:
|
| 175 |
return f"ERROR: {type(e).__name__}: {e}", None
|
| 176 |
|
| 177 |
+
# ================== UI ==================
|
| 178 |
def main():
|
| 179 |
with gr.Blocks(title="OCR Multi-Agent System") as demo:
|
| 180 |
file = gr.File(label="Upload PDF/Image")
|
|
|
|
| 195 |
|
| 196 |
return demo
|
| 197 |
|
| 198 |
+
|
| 199 |
demo = main()
|
| 200 |
|
| 201 |
if __name__ == "__main__":
|
| 202 |
+
demo.launch()
|
|
|
|
|
|