Spaces:
Sleeping
Sleeping
Commit
·
8c9ab96
1
Parent(s):
c99229a
updated
Browse files- app.py +2 -4
- src/model_loader.py +16 -11
app.py
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
-
# app.py — CPU-ready with Gemma 2B
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
import tempfile
|
| 5 |
import textwrap
|
| 6 |
from datetime import datetime
|
| 7 |
-
from pathlib import Path
|
| 8 |
from typing import List, Dict, Any, Optional
|
| 9 |
|
| 10 |
from src.model_loader import load_local_model
|
|
@@ -14,7 +12,7 @@ from src.chatbot import LocalChatbot
|
|
| 14 |
# ----------------------
|
| 15 |
# Model setup
|
| 16 |
# ----------------------
|
| 17 |
-
MODEL_PATH = "models/gemma-2-2b-it-Q4_K_M
|
| 18 |
llm = load_local_model(MODEL_PATH, device=-1) # CPU
|
| 19 |
memory = ConversationMemory(max_len=60)
|
| 20 |
bot = LocalChatbot(llm, memory)
|
|
@@ -103,7 +101,7 @@ def generate_reply(user_msg: str, history: Optional[List[Dict[str, Any]]]):
|
|
| 103 |
return history
|
| 104 |
|
| 105 |
# ----------------------
|
| 106 |
-
# UI
|
| 107 |
# ----------------------
|
| 108 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 109 |
with gr.Row():
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import tempfile
|
| 4 |
import textwrap
|
| 5 |
from datetime import datetime
|
|
|
|
| 6 |
from typing import List, Dict, Any, Optional
|
| 7 |
|
| 8 |
from src.model_loader import load_local_model
|
|
|
|
| 12 |
# ----------------------
|
| 13 |
# Model setup
|
| 14 |
# ----------------------
|
| 15 |
+
MODEL_PATH = "models/gemma-2-2b-it-Q4_K_M" # quantized 2B
|
| 16 |
llm = load_local_model(MODEL_PATH, device=-1) # CPU
|
| 17 |
memory = ConversationMemory(max_len=60)
|
| 18 |
bot = LocalChatbot(llm, memory)
|
|
|
|
| 101 |
return history
|
| 102 |
|
| 103 |
# ----------------------
|
| 104 |
+
# Gradio UI
|
| 105 |
# ----------------------
|
| 106 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 107 |
with gr.Row():
|
src/model_loader.py
CHANGED
|
@@ -1,13 +1,18 @@
|
|
| 1 |
-
|
| 2 |
-
from llama_cpp import Llama
|
| 3 |
|
| 4 |
-
def load_local_model(model_path):
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
)
|
| 13 |
-
return
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
| 2 |
|
| 3 |
+
def load_local_model(model_path, device=0):
|
| 4 |
+
"""
|
| 5 |
+
Loads a local quantized model for CPU or GPU.
|
| 6 |
+
device=-1 => CPU, device>=0 => GPU
|
| 7 |
+
"""
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 10 |
+
|
| 11 |
+
# Use pipeline for text generation
|
| 12 |
+
generator = pipeline(
|
| 13 |
+
"text-generation",
|
| 14 |
+
model=model,
|
| 15 |
+
tokenizer=tokenizer,
|
| 16 |
+
device=device
|
| 17 |
)
|
| 18 |
+
return generator
|