Spaces:
Sleeping
Sleeping
| from transformers import AutoImageProcessor, AutoBackbone | |
| import torch | |
| from PIL import Image | |
| import requests | |
| url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| image = Image.open(requests.get(url, stream=True).raw) | |
| processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224") | |
| model = AutoBackbone.from_pretrained("microsoft/swin-tiny-patch4-window7-224", out_indices=(1,)) | |
| inputs = processor(image, return_tensors="pt") | |
| outputs = model(**inputs) | |
| feature_maps = outputs.feature_maps | |
| # import streamlit as st | |
| # from transformers import pipeline | |
| # transcriber = pipeline(task="sentiment-analysis") | |
| # text = st.text_input('Label', 'enter some text!') | |
| # if text: | |
| # out = transcriber(text) | |
| # st.json(out) | |
| # uploaded_file = st.file_uploader("Choose a CSV file", accept_multiple_files=True) | |
| # bytes_data = uploaded_file.read() | |
| # st.write("filename:", uploaded_file.name) | |
| # st.write(bytes_data) | |
| # st.image(uploaded_file) |