sayande commited on
Commit
ef41d59
Β·
verified Β·
1 Parent(s): c018116

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -6
README.md CHANGED
@@ -1,10 +1,114 @@
1
  ---
2
- title: AgriScholarQA
3
- emoji: πŸ‘
4
- colorFrom: purple
5
- colorTo: gray
6
- sdk: docker
 
 
7
  pinned: false
 
8
  ---
9
 
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Agri-Critique Research Assistant
3
+ emoji: 🌾
4
+ colorFrom: green
5
+ colorTo: yellow
6
+ sdk: streamlit
7
+ sdk_version: 1.28.0
8
+ app_file: app.py
9
  pinned: false
10
+ license: mit
11
  ---
12
 
13
+ # Agri-Critique: Self-Correcting Agricultural QA System
14
+
15
+ ## Overview
16
+
17
+ **Agri-Critique** is an evidence-based question-answering system for agricultural research, powered by a fine-tuned Llama 3.1 8B model trained on 2,859 QA pairs with self-correction capabilities.
18
+
19
+ ### Key Features
20
+
21
+ - 🎯 **Evidence-Grounded Answers**: All responses cite scientific papers
22
+ - πŸ” **Hallucination Detection**: Trained to identify and correct errors
23
+ - πŸ”Ž **Critique Mode**: Validate any answer for accuracy and errors
24
+ - πŸ’¬ **Conversational**: Maintains context across multiple questions
25
+ - πŸ“š **Citation-Aware**: Provides paper references for verification
26
+
27
+ ### Two Interaction Modes
28
+
29
+ 1. **πŸ’¬ Q&A Mode**: Ask questions and get evidence-based answers
30
+ 2. **πŸ” Critique Mode**: Submit a question + proposed answer to validate for:
31
+ - Hallucinations (fake findings)
32
+ - Unsupported claims
33
+ - Temporal/causal errors
34
+ - Missing citations
35
+
36
+ ### Model Details
37
+
38
+ - **Base Model**: Llama 3.1 8B Instruct
39
+ - **Fine-tuning**: LoRA (rank=32, alpha=64)
40
+ - **Training Data**:
41
+ - 1,814 standard QA pairs (63.4%)
42
+ - 1,045 adversarial critique pairs (36.6%)
43
+ - **Training Objective**: Mixed curriculum (answer + critique)
44
+
45
+ ### Dataset Composition
46
+
47
+ The model was trained on **Agri-Critique**, a novel dataset combining:
48
+
49
+ 1. **Standard QA**: Evidence-based agricultural questions
50
+ 2. **Adversarial QA**: Intentionally flawed answers with critiques
51
+ - Hallucinations (fake findings)
52
+ - Temporal mismatches
53
+ - Causal reversals
54
+ - Unsupported extrapolations
55
+
56
+ ### Research Contribution
57
+
58
+ This system demonstrates:
59
+ - **Self-Correction**: Models can learn to detect their own errors
60
+ - **Citation Integrity**: Reduces "fake citation" problem in RAG systems
61
+ - **Domain Adaptation**: Specialized for agricultural/scientific QA
62
+
63
+ ### Usage
64
+
65
+ 1. Type your agricultural research question
66
+ 2. View the evidence-based answer with citations
67
+ 3. Expand "View Evidence Sources" to see paper excerpts
68
+ 4. Ask follow-up questions for multi-turn conversation
69
+
70
+ ### Example Questions
71
+
72
+ - "What is the effect of nitrogen fertilizer on rice yield?"
73
+ - "How does drought stress affect wheat production?"
74
+ - "What are the benefits of crop rotation?"
75
+ - "Explain the impact of climate change on agriculture."
76
+
77
+ ### Limitations
78
+
79
+ - **Domain-Specific**: Optimized for agricultural/scientific questions
80
+ - **Evidence-Dependent**: Answers limited to indexed papers
81
+ - **Not Hallucination-Free**: While reduced, some errors may occur
82
+ - **English Only**: Currently supports English language only
83
+
84
+ ### Citation
85
+
86
+ If you use this system in your research, please cite:
87
+
88
+ ```bibtex
89
+ @article{agri-critique-2025,
90
+ title={Agri-Critique: Training Self-Correcting Language Models for Agricultural Question Answering},
91
+ author={Your Name},
92
+ journal={arXiv preprint},
93
+ year={2025}
94
+ }
95
+ ```
96
+
97
+ ### Links
98
+
99
+ - πŸ“„ [Paper](https://arxiv.org/your-paper) (Coming soon)
100
+ - πŸ’» [GitHub](https://github.com/your-repo)
101
+ - πŸ€— [Model](https://huggingface.co/your-username/agri-critique-llama)
102
+ - πŸ“Š [Dataset](https://huggingface.co/datasets/your-username/agri-critique)
103
+
104
+ ### License
105
+
106
+ MIT License - See LICENSE file for details
107
+
108
+ ### Acknowledgments
109
+
110
+ Built with:
111
+ - Llama 3.1 by Meta
112
+ - Hugging Face Transformers
113
+ - FAISS for vector search
114
+ - Streamlit for UI