Spaces:
Sleeping
Sleeping
| from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig | |
| from peft import PeftModel, PeftConfig | |
| import streamlit as st | |
| model_name = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ" | |
| configm = AutoConfig.from_pretrained(model_name) | |
| configm.quantization_config["disable_exllama"] = True | |
| model = AutoModelForCausalLM.from_pretrained(model_name, | |
| trust_remote_code=False, | |
| revision="main", | |
| config=configm | |
| ) | |
| config = PeftConfig.from_pretrained("saanvi-bot/jayson") | |
| model = PeftModel.from_pretrained(model, "saanvi-bot/jayson", peft_config = config) | |
| # load tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
| """### Use Fine-tuned Model""" | |
| intstructions_string = f"""convert into json format \n""" | |
| prompt_template = lambda comment: f'''[INST] {intstructions_string} \n{comment} \n[/INST]''' | |
| model.eval() | |
| # Streamlit interface | |
| st.title("Text to JSON Converter") | |
| st.write("Enter the text you want to convert to JSON format:") | |
| # Text input from the user | |
| user_input = st.text_area("Input text", height=200) | |
| # Convert input text to JSON | |
| if st.button("Convert"): | |
| prompt = prompt_template(user_input) | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=200) | |
| json_output = tokenizer.batch_decode(outputs)[0] | |
| st.json(json_output) | |