import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel from transformers import BitsAndBytesConfig device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "unsloth/Phi-3-mini-4k-instruct-bnb-4bit" finetuned_model = "saadkhi/SQL_Chat_finetuned_model" tokenizer = AutoTokenizer.from_pretrained(base_model) bnb = BitsAndBytesConfig(load_in_4bit=True) model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=bnb, torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32, device_map="auto" ) model = PeftModel.from_pretrained(model, finetuned_model).to(device) model.eval() def chat(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(device) with torch.inference_mode(): output = model.generate( **inputs, max_new_tokens=60, temperature=0.1, do_sample=False ) return tokenizer.decode(output[0], skip_special_tokens=True) iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="SQL Chatbot") iface.launch()