Spaces:
Running
Running
deploy
Browse files
app.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from peft import PeftModel
|
| 4 |
+
|
| 5 |
+
# Load base + finetuned model
|
| 6 |
+
base_model = "unsloth/Phi-3-mini-4k-instruct-bnb-4bit"
|
| 7 |
+
finetuned_model = "saadkhi/SQL_Chat_finetuned_model"
|
| 8 |
+
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(base_model)
|
| 11 |
+
model = PeftModel.from_pretrained(model, finetuned_model)
|
| 12 |
+
|
| 13 |
+
def chat(prompt):
|
| 14 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 15 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
| 16 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 17 |
+
|
| 18 |
+
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="SQL Chatbot")
|
| 19 |
+
iface.launch()
|