Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""pod_to_sum_v3.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1rbZ98r1Z_IM0Z3VDuNQObxpuZf5KUgmL
|
| 8 |
+
|
| 9 |
+
### Initialization
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
save_dir= os.path.join('./','docs')
|
| 14 |
+
if not os.path.exists(save_dir):
|
| 15 |
+
os.mkdir(save_dir)
|
| 16 |
+
|
| 17 |
+
transcription_model = "openai/whisper-base"
|
| 18 |
+
llm_model = "gmurro/bart-large-finetuned-filtered-spotify-podcast-summ"
|
| 19 |
+
|
| 20 |
+
!pip install -U -q pytube transformers
|
| 21 |
+
|
| 22 |
+
!pip -q install gradio==3.45.0
|
| 23 |
+
|
| 24 |
+
import pandas as pd
|
| 25 |
+
import numpy as np
|
| 26 |
+
import pytube
|
| 27 |
+
from pytube import YouTube
|
| 28 |
+
import transformers
|
| 29 |
+
from transformers import pipeline
|
| 30 |
+
import torch
|
| 31 |
+
|
| 32 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
+
|
| 34 |
+
"""### Define how to get transcript of the YT video"""
|
| 35 |
+
|
| 36 |
+
def get_transcript(url):
|
| 37 |
+
yt_video = YouTube(str(url))
|
| 38 |
+
yt_audio = yt_video.streams.filter(only_audio=True, file_extension='mp4').first() # get 1st available audio stream
|
| 39 |
+
out_file = yt_audio.download(filename="audio.mp4", output_path = save_dir)
|
| 40 |
+
|
| 41 |
+
asr = pipeline("automatic-speech-recognition", model=transcription_model, device=device)
|
| 42 |
+
|
| 43 |
+
import librosa
|
| 44 |
+
speech_array, sampling_rate = librosa.load(out_file, sr=16000) # getting audio file array
|
| 45 |
+
|
| 46 |
+
audio_text = asr(
|
| 47 |
+
speech_array,
|
| 48 |
+
max_new_tokens=256,
|
| 49 |
+
generate_kwargs={"task": "transcribe"},
|
| 50 |
+
chunk_length_s=30,
|
| 51 |
+
batch_size=8) # calling whisper model
|
| 52 |
+
|
| 53 |
+
del(asr)
|
| 54 |
+
torch.cuda.empty_cache() #deleting cache
|
| 55 |
+
|
| 56 |
+
return audio_text['text']
|
| 57 |
+
|
| 58 |
+
"""### Define functions to generate summary"""
|
| 59 |
+
|
| 60 |
+
def clean_sent(sent_list):
|
| 61 |
+
new_sent_list = [sent_list[0]]
|
| 62 |
+
for i in range(len(sent_list)):
|
| 63 |
+
if sent_list[i] != new_sent_list[-1]: new_sent_list.append(sent_list[i])
|
| 64 |
+
return new_sent_list
|
| 65 |
+
|
| 66 |
+
import nltk
|
| 67 |
+
nltk.download('punkt')
|
| 68 |
+
|
| 69 |
+
def get_chunks (audio_text, sent_overlap, max_token, tokenizer):
|
| 70 |
+
# pre-processing text
|
| 71 |
+
sentences = nltk.tokenize.sent_tokenize(audio_text)
|
| 72 |
+
sentences = clean_sent(sentences)
|
| 73 |
+
|
| 74 |
+
first_sentence = 0
|
| 75 |
+
last_sentence = 0
|
| 76 |
+
chunks=[]
|
| 77 |
+
while last_sentence <= len(sentences) - 1:
|
| 78 |
+
last_sentence = first_sentence
|
| 79 |
+
chunk_parts = []
|
| 80 |
+
chunk_size = 0
|
| 81 |
+
for sentence in sentences[first_sentence:]:
|
| 82 |
+
sentence_sz = len(tokenizer.tokenize(sentence))
|
| 83 |
+
if chunk_size + sentence_sz > max_token:
|
| 84 |
+
break
|
| 85 |
+
|
| 86 |
+
chunk_parts.append(sentence)
|
| 87 |
+
chunk_size += sentence_sz
|
| 88 |
+
last_sentence += 1
|
| 89 |
+
|
| 90 |
+
chunks.append(" ".join(chunk_parts))
|
| 91 |
+
first_sentence = last_sentence - sent_overlap
|
| 92 |
+
return chunks
|
| 93 |
+
|
| 94 |
+
"""### Define how to get summary of the transcript"""
|
| 95 |
+
|
| 96 |
+
def get_summary(audio_text):
|
| 97 |
+
import re
|
| 98 |
+
audio_text = re.sub(r'\b(\w+) \1\b', r'\1', audio_text, flags=re.IGNORECASE) # cleaning text
|
| 99 |
+
|
| 100 |
+
from transformers import AutoTokenizer
|
| 101 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model) # set tockenizer
|
| 102 |
+
|
| 103 |
+
from transformers import pipeline
|
| 104 |
+
summarizer = pipeline("summarization", model=llm_model) # set summarizer
|
| 105 |
+
|
| 106 |
+
model_max_tokens = tokenizer.model_max_length # get max tockens model can process
|
| 107 |
+
text_tokens = len(tokenizer.tokenize(audio_text)) # get number of tockens in audio text
|
| 108 |
+
|
| 109 |
+
def get_map_summary(chunk_text, summarizer):
|
| 110 |
+
max_token = model_max_tokens - 2 #protect for "" before and after the text
|
| 111 |
+
sent_overlap = 3 #overlapping sentences between 2 chunks
|
| 112 |
+
sent_chunks = get_chunks(audio_text = chunk_text,sent_overlap = sent_overlap,max_token = max_token, tokenizer = tokenizer) # get chunks
|
| 113 |
+
chunk_summary_list = summarizer(sent_chunks,min_length=50, max_length=200, batch_size=8) # get summary per chunk
|
| 114 |
+
|
| 115 |
+
grouped_summary = ""
|
| 116 |
+
for c in chunk_summary_list: grouped_summary += c['summary_text'] + " "
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
return grouped_summary
|
| 120 |
+
|
| 121 |
+
# check text requires map-reduce stategy
|
| 122 |
+
|
| 123 |
+
map_text = audio_text
|
| 124 |
+
long_summary = ""
|
| 125 |
+
|
| 126 |
+
while text_tokens > model_max_tokens:
|
| 127 |
+
map_summary = get_map_summary(chunk_text=map_text, summarizer=summarizer)
|
| 128 |
+
text_tokens = len(tokenizer.tokenize(map_summary))
|
| 129 |
+
long_summary = map_summary
|
| 130 |
+
map_text = map_summary
|
| 131 |
+
|
| 132 |
+
# else deploy reduce method
|
| 133 |
+
else:
|
| 134 |
+
max_token = round(text_tokens*0.3) # 1/3rd reduction
|
| 135 |
+
final_summary = summarizer(map_text,min_length=35, max_length=max_token)
|
| 136 |
+
final_summary = final_summary[0]["summary_text"]
|
| 137 |
+
|
| 138 |
+
if long_summary == "": long_summary = "The video is too short to produce a descriptive summary"
|
| 139 |
+
|
| 140 |
+
del(tokenizer, summarizer)
|
| 141 |
+
torch.cuda.empty_cache() #deleting cache
|
| 142 |
+
|
| 143 |
+
return final_summary, long_summary
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
"""### Defining Gradio App"""
|
| 147 |
+
|
| 148 |
+
import gradio as gr
|
| 149 |
+
|
| 150 |
+
import pytube
|
| 151 |
+
from pytube import YouTube
|
| 152 |
+
|
| 153 |
+
def get_youtube_title(url):
|
| 154 |
+
yt = YouTube(str(url))
|
| 155 |
+
return yt.title
|
| 156 |
+
|
| 157 |
+
def get_video(url):
|
| 158 |
+
vid_id = pytube.extract.video_id(url)
|
| 159 |
+
embed_html = '<iframe width="100%" height="315" src="https://www.youtube.com/embed/{}" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>'.format(vid_id)
|
| 160 |
+
return embed_html
|
| 161 |
+
|
| 162 |
+
def summarize_youtube_video(url):
|
| 163 |
+
print("URL:",url)
|
| 164 |
+
text = get_transcript(url)
|
| 165 |
+
print("Transcript:",text[:500])
|
| 166 |
+
short_summary, long_summary = get_summary(text)
|
| 167 |
+
print("Short Summary:",short_summary)
|
| 168 |
+
print("Long Summary:",long_summary)
|
| 169 |
+
return text, short_summary, long_summary
|
| 170 |
+
|
| 171 |
+
html = '<iframe width="100%" height="315" src="https://www.youtube.com/embed/" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>'
|
| 172 |
+
|
| 173 |
+
# Defining the structure of the UI
|
| 174 |
+
with gr.Blocks() as demo:
|
| 175 |
+
with gr.Row():
|
| 176 |
+
gr.Markdown("# Summarize a Long YouTube Video")
|
| 177 |
+
|
| 178 |
+
with gr.Row():
|
| 179 |
+
with gr.Column(scale=4):
|
| 180 |
+
url = gr.Textbox(label="Enter YouTube video link here:",placeholder="https://www.youtube.com/watch?v=")
|
| 181 |
+
with gr.Column(scale=1):
|
| 182 |
+
sum_btn = gr.Button("Summarize!")
|
| 183 |
+
|
| 184 |
+
gr.Markdown("# Results")
|
| 185 |
+
|
| 186 |
+
title = gr.Textbox(label="Video Title",placeholder="title...")
|
| 187 |
+
|
| 188 |
+
with gr.Row():
|
| 189 |
+
with gr.Column(scale=4):
|
| 190 |
+
video = gr.HTML(html,scale=1)
|
| 191 |
+
with gr.Column():
|
| 192 |
+
with gr.Row():
|
| 193 |
+
short_summary = gr.Textbox(label="Gist",placeholder="short summary...",scale=1)
|
| 194 |
+
with gr.Row():
|
| 195 |
+
long_summary = gr.Textbox(label="Summary",placeholder="long summary...",scale=2)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
with gr.Row():
|
| 199 |
+
with gr.Group():
|
| 200 |
+
text = gr.Textbox(label="Full Transcript",placeholder="transcript...",show_label=True)
|
| 201 |
+
|
| 202 |
+
with gr.Accordion("Credits and Notes",open=False):
|
| 203 |
+
gr.Markdown("""
|
| 204 |
+
1. Transcipt is generated by openai/whisper-base model by downloading YouTube video.\n
|
| 205 |
+
2. Summary is generated by gmurro/bart-large-finetuned-filtered-spotify-podcast-summ.\n
|
| 206 |
+
3. The model is possible because of Hugging Face transformers.\n
|
| 207 |
+
""")
|
| 208 |
+
|
| 209 |
+
# Defining the functions to call on clicking the button
|
| 210 |
+
sum_btn.click(fn=get_youtube_title, inputs=url, outputs=title, api_name="get_youtube_title", queue=False)
|
| 211 |
+
sum_btn.click(fn=summarize_youtube_video, inputs=url, outputs=[text, short_summary, long_summary], api_name="summarize_youtube_video", queue=True)
|
| 212 |
+
sum_btn.click(fn=get_video, inputs=url, outputs=video, api_name="get_youtube_video", queue=False)
|
| 213 |
+
|
| 214 |
+
demo.queue()
|
| 215 |
+
demo.launch()
|