Spaces:
Paused
Paused
Update train.py
Browse files
train.py
CHANGED
|
@@ -14,7 +14,7 @@ def load_model(model_name, device_id=0):
|
|
| 14 |
load_in_4bit=True,
|
| 15 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 16 |
bnb_4bit_quant_type="nf4",
|
| 17 |
-
bnb_4bit_use_double_quant=
|
| 18 |
)
|
| 19 |
|
| 20 |
processor = AutoProcessor.from_pretrained(model_name)
|
|
@@ -24,18 +24,16 @@ def load_model(model_name, device_id=0):
|
|
| 24 |
quantization_config=bnb_config,
|
| 25 |
dtype=torch.bfloat16,
|
| 26 |
device_map={"": device_id},
|
|
|
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
return processor, model
|
| 30 |
|
| 31 |
|
| 32 |
-
processed_count = 0
|
| 33 |
-
|
| 34 |
def caption_batch(batch, processor, model):
|
| 35 |
-
global processed_count
|
| 36 |
-
|
| 37 |
images = batch["image"]
|
| 38 |
-
|
| 39 |
pil_images = []
|
| 40 |
for image in images:
|
| 41 |
if not isinstance(image, Image.Image):
|
|
@@ -44,56 +42,51 @@ def caption_batch(batch, processor, model):
|
|
| 44 |
image = image.convert("RGB")
|
| 45 |
pil_images.append(image)
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
"
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
inputs = processor(
|
| 63 |
-
text=texts,
|
| 64 |
-
images=pil_images,
|
| 65 |
-
return_tensors="pt",
|
| 66 |
-
padding=True
|
| 67 |
)
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 70 |
|
| 71 |
-
with torch.no_grad():
|
| 72 |
generated = model.generate(
|
| 73 |
**inputs,
|
| 74 |
-
max_new_tokens=
|
|
|
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
decoded = processor.batch_decode(generated, skip_special_tokens=False)
|
| 78 |
|
| 79 |
captions = []
|
|
|
|
| 80 |
for d in decoded:
|
| 81 |
if "<|im_start|>assistant" in d:
|
| 82 |
-
d = d.split("<|im_start|>assistant")[-1]
|
| 83 |
-
|
| 84 |
-
special_tokens = set(processor.tokenizer.all_special_tokens)
|
| 85 |
for token in special_tokens:
|
| 86 |
d = d.replace(token, "")
|
| 87 |
-
|
| 88 |
d = d.strip()
|
| 89 |
captions.append(d)
|
| 90 |
|
| 91 |
-
processed_count += len(images)
|
| 92 |
-
if processed_count > 100:
|
| 93 |
-
print(f"Processed {processed_count} examples so far...")
|
| 94 |
-
|
| 95 |
return {
|
| 96 |
-
"image": images,
|
| 97 |
"text": captions,
|
| 98 |
}
|
| 99 |
|
|
@@ -101,9 +94,6 @@ def caption_batch(batch, processor, model):
|
|
| 101 |
def process_shard_worker(
|
| 102 |
gpu_id, start, end, model_name, batch_size, input_dataset, output_file
|
| 103 |
):
|
| 104 |
-
global processed_count
|
| 105 |
-
processed_count = 0
|
| 106 |
-
|
| 107 |
torch.cuda.set_device(gpu_id)
|
| 108 |
|
| 109 |
print(f"[GPU {gpu_id}] Loading model...", flush=True)
|
|
@@ -117,12 +107,17 @@ def process_shard_worker(
|
|
| 117 |
else:
|
| 118 |
shard = cast(Dataset, loaded)
|
| 119 |
|
|
|
|
|
|
|
|
|
|
| 120 |
print(f"[GPU {gpu_id}] Processing {len(shard)} examples...", flush=True)
|
| 121 |
result = shard.map(
|
| 122 |
lambda batch: caption_batch(batch, processor, model),
|
| 123 |
batched=True,
|
| 124 |
batch_size=batch_size,
|
| 125 |
-
remove_columns=shard.column_names,
|
|
|
|
|
|
|
| 126 |
)
|
| 127 |
|
| 128 |
print(f"[GPU {gpu_id}] Saving results to {output_file}...", flush=True)
|
|
@@ -134,9 +129,9 @@ def process_shard_worker(
|
|
| 134 |
|
| 135 |
def main():
|
| 136 |
input_dataset = "none-yet/anime-captions"
|
| 137 |
-
output_dataset =
|
| 138 |
model_name = "datalab-to/chandra"
|
| 139 |
-
batch_size =
|
| 140 |
|
| 141 |
print("Loading dataset info...")
|
| 142 |
loaded = datasets.load_dataset(input_dataset, split="train")
|
|
@@ -182,7 +177,7 @@ def main():
|
|
| 182 |
|
| 183 |
print(f"Final dataset size: {len(final_ds)}")
|
| 184 |
print("Pushing to hub...")
|
| 185 |
-
final_ds.push_to_hub(output_dataset, create_pr=
|
| 186 |
|
| 187 |
print("Cleaning up temporary files...")
|
| 188 |
for f in temp_files:
|
|
|
|
| 14 |
load_in_4bit=True,
|
| 15 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 16 |
bnb_4bit_quant_type="nf4",
|
| 17 |
+
bnb_4bit_use_double_quant=False,
|
| 18 |
)
|
| 19 |
|
| 20 |
processor = AutoProcessor.from_pretrained(model_name)
|
|
|
|
| 24 |
quantization_config=bnb_config,
|
| 25 |
dtype=torch.bfloat16,
|
| 26 |
device_map={"": device_id},
|
| 27 |
+
torch_dtype=torch.bfloat16,
|
| 28 |
+
attn_implementation="flash_attention_2",
|
| 29 |
)
|
| 30 |
|
| 31 |
return processor, model
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
| 34 |
def caption_batch(batch, processor, model):
|
|
|
|
|
|
|
| 35 |
images = batch["image"]
|
| 36 |
+
|
| 37 |
pil_images = []
|
| 38 |
for image in images:
|
| 39 |
if not isinstance(image, Image.Image):
|
|
|
|
| 42 |
image = image.convert("RGB")
|
| 43 |
pil_images.append(image)
|
| 44 |
|
| 45 |
+
msg = [
|
| 46 |
+
{
|
| 47 |
+
"role": "user",
|
| 48 |
+
"content": [
|
| 49 |
+
{"type": "image"},
|
| 50 |
+
{
|
| 51 |
+
"type": "text",
|
| 52 |
+
"text": "Describe the image concisely, and skip mentioning that it's illustrated or from anime.",
|
| 53 |
+
},
|
| 54 |
+
],
|
| 55 |
+
}
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
text = processor.apply_chat_template(
|
| 59 |
+
msg, add_generation_prompt=True, tokenize=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
+
texts = [text] * len(pil_images)
|
| 62 |
+
|
| 63 |
+
inputs = processor(text=texts, images=pil_images, return_tensors="pt", padding=True)
|
| 64 |
|
| 65 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 66 |
|
| 67 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 68 |
generated = model.generate(
|
| 69 |
**inputs,
|
| 70 |
+
max_new_tokens=128,
|
| 71 |
+
do_sample=False,
|
| 72 |
+
use_cache=True,
|
| 73 |
)
|
| 74 |
|
| 75 |
decoded = processor.batch_decode(generated, skip_special_tokens=False)
|
| 76 |
|
| 77 |
captions = []
|
| 78 |
+
special_tokens = set(processor.tokenizer.all_special_tokens)
|
| 79 |
for d in decoded:
|
| 80 |
if "<|im_start|>assistant" in d:
|
| 81 |
+
d = d.split("<|im_start|>assistant")[-1]
|
| 82 |
+
|
|
|
|
| 83 |
for token in special_tokens:
|
| 84 |
d = d.replace(token, "")
|
| 85 |
+
|
| 86 |
d = d.strip()
|
| 87 |
captions.append(d)
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
return {
|
|
|
|
| 90 |
"text": captions,
|
| 91 |
}
|
| 92 |
|
|
|
|
| 94 |
def process_shard_worker(
|
| 95 |
gpu_id, start, end, model_name, batch_size, input_dataset, output_file
|
| 96 |
):
|
|
|
|
|
|
|
|
|
|
| 97 |
torch.cuda.set_device(gpu_id)
|
| 98 |
|
| 99 |
print(f"[GPU {gpu_id}] Loading model...", flush=True)
|
|
|
|
| 107 |
else:
|
| 108 |
shard = cast(Dataset, loaded)
|
| 109 |
|
| 110 |
+
shard = shard.with_format("torch")
|
| 111 |
+
shard.set_format(type="torch", columns=["image"])
|
| 112 |
+
|
| 113 |
print(f"[GPU {gpu_id}] Processing {len(shard)} examples...", flush=True)
|
| 114 |
result = shard.map(
|
| 115 |
lambda batch: caption_batch(batch, processor, model),
|
| 116 |
batched=True,
|
| 117 |
batch_size=batch_size,
|
| 118 |
+
remove_columns=[col for col in shard.column_names if col != "image"],
|
| 119 |
+
writer_batch_size=1000,
|
| 120 |
+
keep_in_memory=True,
|
| 121 |
)
|
| 122 |
|
| 123 |
print(f"[GPU {gpu_id}] Saving results to {output_file}...", flush=True)
|
|
|
|
| 129 |
|
| 130 |
def main():
|
| 131 |
input_dataset = "none-yet/anime-captions"
|
| 132 |
+
output_dataset = "nroggendorff/anime-captions"
|
| 133 |
model_name = "datalab-to/chandra"
|
| 134 |
+
batch_size = 32
|
| 135 |
|
| 136 |
print("Loading dataset info...")
|
| 137 |
loaded = datasets.load_dataset(input_dataset, split="train")
|
|
|
|
| 177 |
|
| 178 |
print(f"Final dataset size: {len(final_ds)}")
|
| 179 |
print("Pushing to hub...")
|
| 180 |
+
final_ds.push_to_hub(output_dataset, create_pr=False)
|
| 181 |
|
| 182 |
print("Cleaning up temporary files...")
|
| 183 |
for f in temp_files:
|