Spaces:
Paused
Paused
Update train.py
Browse files
train.py
CHANGED
|
@@ -31,7 +31,7 @@ def load_model(model_name, device_id=0):
|
|
| 31 |
return processor, model
|
| 32 |
|
| 33 |
|
| 34 |
-
def
|
| 35 |
msg = [
|
| 36 |
{
|
| 37 |
"role": "user",
|
|
@@ -44,92 +44,54 @@ def build_template(processor):
|
|
| 44 |
],
|
| 45 |
}
|
| 46 |
]
|
|
|
|
| 47 |
return processor.apply_chat_template(
|
| 48 |
msg, add_generation_prompt=True, tokenize=False
|
| 49 |
)
|
| 50 |
|
| 51 |
|
| 52 |
-
def
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
processor = AutoProcessor.from_pretrained(model_name)
|
| 65 |
-
template = build_template(processor)
|
| 66 |
-
|
| 67 |
-
def _pp(batch):
|
| 68 |
-
out_images = []
|
| 69 |
-
for img in batch["image"]:
|
| 70 |
-
if isinstance(img, Image.Image):
|
| 71 |
-
if img.mode != "RGB":
|
| 72 |
-
img = img.convert("RGB")
|
| 73 |
-
out_images.append(img)
|
| 74 |
-
|
| 75 |
-
prompts = [template] * len(out_images)
|
| 76 |
-
return {
|
| 77 |
-
"image": out_images,
|
| 78 |
-
"prompt": prompts,
|
| 79 |
-
}
|
| 80 |
|
|
|
|
|
|
|
| 81 |
ds = datasets.load_dataset(input_dataset, split="train")
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
f"Failed to load dataset '{input_dataset}' with split 'train'. Check the dataset name or available splits."
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
if isinstance(ds, datasets.DatasetDict):
|
| 89 |
-
if "train" in ds:
|
| 90 |
-
ds = ds["train"]
|
| 91 |
-
else:
|
| 92 |
-
raise ValueError(
|
| 93 |
-
f"'{input_dataset}' does not contain a 'train' split. Available splits: {list(ds.keys())}"
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
if not isinstance(ds, datasets.Dataset):
|
| 97 |
-
raise TypeError(f"Expected a Dataset instance, got {type(ds)}")
|
| 98 |
-
|
| 99 |
-
print(f"Dataset loaded: {len(ds)} examples")
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
remove_columns=[
|
|
|
|
|
|
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
-
print("Saving
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
part = Dataset.from_list(chunk)
|
| 111 |
-
parts.append(part)
|
| 112 |
|
| 113 |
-
ds2 = datasets.concatenate_datasets(parts)
|
| 114 |
-
ds2.save_to_disk(output_folder)
|
| 115 |
|
| 116 |
-
|
|
|
|
|
|
|
| 117 |
|
|
|
|
| 118 |
|
| 119 |
-
def caption_batch(batch, processor, model):
|
| 120 |
-
imgs = batch["image"]
|
| 121 |
-
prompts = batch["prompt"]
|
| 122 |
-
|
| 123 |
-
pil_images = []
|
| 124 |
-
for image in imgs:
|
| 125 |
-
if isinstance(image, Image.Image):
|
| 126 |
-
if image.mode != "RGB":
|
| 127 |
-
image = image.convert("RGB")
|
| 128 |
-
pil_images.append(image)
|
| 129 |
-
|
| 130 |
-
inputs = processor(
|
| 131 |
-
text=prompts, images=pil_images, return_tensors="pt", padding=True
|
| 132 |
-
)
|
| 133 |
inputs = {
|
| 134 |
k: v.pin_memory().to(model.device, non_blocking=True) for k, v in inputs.items()
|
| 135 |
}
|
|
@@ -144,47 +106,49 @@ def caption_batch(batch, processor, model):
|
|
| 144 |
decoded = processor.batch_decode(generated, skip_special_tokens=False)
|
| 145 |
|
| 146 |
captions = []
|
| 147 |
-
|
| 148 |
-
|
| 149 |
for d in decoded:
|
| 150 |
if "<|im_start|>assistant" in d:
|
| 151 |
d = d.split("<|im_start|>assistant")[-1]
|
| 152 |
-
|
|
|
|
| 153 |
d = d.replace(token, "")
|
| 154 |
-
captions.append(d.strip())
|
| 155 |
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
|
| 159 |
def process_shard(
|
| 160 |
-
gpu_id, start, end, model_name, batch_size,
|
| 161 |
):
|
| 162 |
try:
|
| 163 |
torch.cuda.set_device(gpu_id)
|
| 164 |
|
| 165 |
-
print(f"[GPU {gpu_id}] Loading model
|
| 166 |
processor, model = load_model(model_name, gpu_id)
|
| 167 |
|
| 168 |
-
print(f"[GPU {gpu_id}] Loading
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
shard = shard.select(range(start, end))
|
| 173 |
|
| 174 |
-
print(f"[GPU {gpu_id}]
|
| 175 |
result = shard.map(
|
| 176 |
lambda batch: caption_batch(batch, processor, model),
|
| 177 |
batched=True,
|
| 178 |
batch_size=batch_size,
|
| 179 |
-
remove_columns=["
|
| 180 |
)
|
| 181 |
|
| 182 |
-
print(f"[GPU {gpu_id}] Saving {output_file}
|
| 183 |
result.save_to_disk(output_file)
|
| 184 |
|
| 185 |
-
print(f"[GPU {gpu_id}] Done
|
| 186 |
return output_file
|
| 187 |
-
|
| 188 |
except Exception as e:
|
| 189 |
print(f"[GPU {gpu_id}] Error: {e}", flush=True)
|
| 190 |
raise
|
|
@@ -194,37 +158,44 @@ def main():
|
|
| 194 |
mp.set_start_method("spawn", force=True)
|
| 195 |
|
| 196 |
input_dataset = "none-yet/anime-captions"
|
| 197 |
-
|
| 198 |
output_dataset = "nroggendorff/anime-captions"
|
| 199 |
model_name = "datalab-to/chandra"
|
| 200 |
batch_size = 20
|
| 201 |
|
| 202 |
-
if not os.path.exists(
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
ds = datasets.load_from_disk(prepped_folder)
|
| 206 |
-
total = len(ds)
|
| 207 |
|
|
|
|
|
|
|
| 208 |
num_gpus = torch.cuda.device_count()
|
| 209 |
-
|
|
|
|
| 210 |
|
| 211 |
-
print(f"Dataset size: {
|
| 212 |
print(f"Using {num_gpus} GPUs")
|
| 213 |
-
print(f"Shard size: {
|
| 214 |
|
| 215 |
processes = []
|
| 216 |
temp_files = []
|
| 217 |
|
| 218 |
for i in range(num_gpus):
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
temp_files.append(of)
|
| 224 |
|
| 225 |
p = mp.Process(
|
| 226 |
target=process_shard,
|
| 227 |
-
args=(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
)
|
| 229 |
p.start()
|
| 230 |
processes.append(p)
|
|
@@ -232,32 +203,32 @@ def main():
|
|
| 232 |
for p in processes:
|
| 233 |
p.join()
|
| 234 |
if p.exitcode != 0:
|
| 235 |
-
print("
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
final_ds = datasets.concatenate_datasets(parts)
|
| 252 |
-
|
| 253 |
-
print(f"Pushing final dataset to {output_dataset}…")
|
| 254 |
final_ds.push_to_hub(output_dataset, create_pr=False)
|
| 255 |
|
| 256 |
-
print("Cleaning up
|
| 257 |
for f in temp_files:
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
-
print("Done
|
| 261 |
|
| 262 |
|
| 263 |
if __name__ == "__main__":
|
|
|
|
| 31 |
return processor, model
|
| 32 |
|
| 33 |
|
| 34 |
+
def getTemplate(processor):
|
| 35 |
msg = [
|
| 36 |
{
|
| 37 |
"role": "user",
|
|
|
|
| 44 |
],
|
| 45 |
}
|
| 46 |
]
|
| 47 |
+
|
| 48 |
return processor.apply_chat_template(
|
| 49 |
msg, add_generation_prompt=True, tokenize=False
|
| 50 |
)
|
| 51 |
|
| 52 |
|
| 53 |
+
def preprocess_example(example, processor):
|
| 54 |
+
image = example["image"]
|
| 55 |
+
if isinstance(image, Image.Image):
|
| 56 |
+
if image.mode != "RGB":
|
| 57 |
+
image = image.convert("RGB")
|
| 58 |
+
else:
|
| 59 |
+
raise ValueError("Image must be a PIL Image")
|
|
|
|
| 60 |
|
| 61 |
+
text = getTemplate(processor)
|
| 62 |
+
return {
|
| 63 |
+
"image": image,
|
| 64 |
+
"text_prompt": text,
|
| 65 |
+
}
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
def run_preprocessing(input_dataset, output_dir, num_proc=4):
|
| 69 |
+
print("Loading dataset for preprocessing...")
|
| 70 |
ds = datasets.load_dataset(input_dataset, split="train")
|
| 71 |
|
| 72 |
+
print("Loading processor...")
|
| 73 |
+
processor = AutoProcessor.from_pretrained("datalab-to/chandra")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
print("Running preprocessing...")
|
| 76 |
+
processed_ds = ds.map(
|
| 77 |
+
lambda ex: preprocess_example(ex, processor),
|
| 78 |
+
remove_columns=[
|
| 79 |
+
col for col in ds.column_names if col not in ["image", "text_prompt"]
|
| 80 |
+
],
|
| 81 |
+
num_proc=num_proc,
|
| 82 |
)
|
| 83 |
|
| 84 |
+
print(f"Saving preprocessed dataset to {output_dir}...")
|
| 85 |
+
processed_ds.save_to_disk(output_dir)
|
| 86 |
+
print("Preprocessing done.")
|
|
|
|
|
|
|
| 87 |
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
def caption_batch(batch, processor, model):
|
| 90 |
+
images = batch["image"]
|
| 91 |
+
texts = batch["text_prompt"]
|
| 92 |
|
| 93 |
+
inputs = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
inputs = {
|
| 96 |
k: v.pin_memory().to(model.device, non_blocking=True) for k, v in inputs.items()
|
| 97 |
}
|
|
|
|
| 106 |
decoded = processor.batch_decode(generated, skip_special_tokens=False)
|
| 107 |
|
| 108 |
captions = []
|
| 109 |
+
special_tokens = set(processor.tokenizer.all_special_tokens)
|
|
|
|
| 110 |
for d in decoded:
|
| 111 |
if "<|im_start|>assistant" in d:
|
| 112 |
d = d.split("<|im_start|>assistant")[-1]
|
| 113 |
+
|
| 114 |
+
for token in special_tokens:
|
| 115 |
d = d.replace(token, "")
|
|
|
|
| 116 |
|
| 117 |
+
d = d.strip()
|
| 118 |
+
captions.append(d)
|
| 119 |
+
|
| 120 |
+
return {
|
| 121 |
+
"text": captions,
|
| 122 |
+
}
|
| 123 |
|
| 124 |
|
| 125 |
def process_shard(
|
| 126 |
+
gpu_id, start, end, model_name, batch_size, input_dataset, output_file
|
| 127 |
):
|
| 128 |
try:
|
| 129 |
torch.cuda.set_device(gpu_id)
|
| 130 |
|
| 131 |
+
print(f"[GPU {gpu_id}] Loading model...", flush=True)
|
| 132 |
processor, model = load_model(model_name, gpu_id)
|
| 133 |
|
| 134 |
+
print(f"[GPU {gpu_id}] Loading data shard [{start}:{end}]...", flush=True)
|
| 135 |
+
loaded = datasets.load_from_disk(input_dataset).select(range(start, end))
|
| 136 |
+
|
| 137 |
+
shard = cast(Dataset, loaded)
|
|
|
|
| 138 |
|
| 139 |
+
print(f"[GPU {gpu_id}] Processing {len(shard)} examples...", flush=True)
|
| 140 |
result = shard.map(
|
| 141 |
lambda batch: caption_batch(batch, processor, model),
|
| 142 |
batched=True,
|
| 143 |
batch_size=batch_size,
|
| 144 |
+
remove_columns=["text_prompt"],
|
| 145 |
)
|
| 146 |
|
| 147 |
+
print(f"[GPU {gpu_id}] Saving results to {output_file}...", flush=True)
|
| 148 |
result.save_to_disk(output_file)
|
| 149 |
|
| 150 |
+
print(f"[GPU {gpu_id}] Done!", flush=True)
|
| 151 |
return output_file
|
|
|
|
| 152 |
except Exception as e:
|
| 153 |
print(f"[GPU {gpu_id}] Error: {e}", flush=True)
|
| 154 |
raise
|
|
|
|
| 158 |
mp.set_start_method("spawn", force=True)
|
| 159 |
|
| 160 |
input_dataset = "none-yet/anime-captions"
|
| 161 |
+
preprocessed_dataset = "temp_preprocessed"
|
| 162 |
output_dataset = "nroggendorff/anime-captions"
|
| 163 |
model_name = "datalab-to/chandra"
|
| 164 |
batch_size = 20
|
| 165 |
|
| 166 |
+
if not os.path.exists(preprocessed_dataset):
|
| 167 |
+
run_preprocessing(input_dataset, preprocessed_dataset)
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
print("Loading preprocessed dataset...")
|
| 170 |
+
ds = datasets.load_from_disk(preprocessed_dataset)
|
| 171 |
num_gpus = torch.cuda.device_count()
|
| 172 |
+
total_size = len(ds)
|
| 173 |
+
shard_size = total_size // num_gpus
|
| 174 |
|
| 175 |
+
print(f"Dataset size: {total_size}")
|
| 176 |
print(f"Using {num_gpus} GPUs")
|
| 177 |
+
print(f"Shard size: {shard_size}")
|
| 178 |
|
| 179 |
processes = []
|
| 180 |
temp_files = []
|
| 181 |
|
| 182 |
for i in range(num_gpus):
|
| 183 |
+
start = i * shard_size
|
| 184 |
+
end = start + shard_size if i < num_gpus - 1 else total_size
|
| 185 |
+
output_file = f"temp_shard_{i}"
|
| 186 |
+
temp_files.append(output_file)
|
|
|
|
| 187 |
|
| 188 |
p = mp.Process(
|
| 189 |
target=process_shard,
|
| 190 |
+
args=(
|
| 191 |
+
i,
|
| 192 |
+
start,
|
| 193 |
+
end,
|
| 194 |
+
model_name,
|
| 195 |
+
batch_size,
|
| 196 |
+
preprocessed_dataset,
|
| 197 |
+
output_file,
|
| 198 |
+
),
|
| 199 |
)
|
| 200 |
p.start()
|
| 201 |
processes.append(p)
|
|
|
|
| 203 |
for p in processes:
|
| 204 |
p.join()
|
| 205 |
if p.exitcode != 0:
|
| 206 |
+
print(f"\nProcess failed with exit code {p.exitcode}", flush=True)
|
| 207 |
+
print("Terminating all processes...", flush=True)
|
| 208 |
+
for proc in processes:
|
| 209 |
+
if proc.is_alive():
|
| 210 |
+
proc.terminate()
|
| 211 |
+
for proc in processes:
|
| 212 |
+
proc.join()
|
| 213 |
+
raise RuntimeError(f"At least one process failed")
|
| 214 |
+
|
| 215 |
+
print("\nAll processes completed. Loading and concatenating results...")
|
| 216 |
+
|
| 217 |
+
shards = [cast(Dataset, datasets.load_from_disk(f)) for f in temp_files]
|
| 218 |
+
final_ds = datasets.concatenate_datasets(shards)
|
| 219 |
+
|
| 220 |
+
print(f"Final dataset size: {len(final_ds)}")
|
| 221 |
+
print("Pushing to hub...")
|
|
|
|
|
|
|
|
|
|
| 222 |
final_ds.push_to_hub(output_dataset, create_pr=False)
|
| 223 |
|
| 224 |
+
print("Cleaning up temporary files...")
|
| 225 |
for f in temp_files:
|
| 226 |
+
if os.path.exists(f):
|
| 227 |
+
shutil.rmtree(f)
|
| 228 |
+
if os.path.exists(preprocessed_dataset):
|
| 229 |
+
shutil.rmtree(preprocessed_dataset)
|
| 230 |
|
| 231 |
+
print("Done!")
|
| 232 |
|
| 233 |
|
| 234 |
if __name__ == "__main__":
|