# 🏷️ ECG-FM Label Discovery and Fix Summary ## 🚨 **CRITICAL ISSUE IDENTIFIED AND RESOLVED** ### **❌ WHAT WAS WRONG** 1. **Generic Labels Created**: I created 26 generic clinical ECG conditions without verifying the model's actual output 2. **Label Mismatch**: My labels didn't match what the ECG-FM model was trained on 3. **Incorrect Thresholds**: Thresholds were set to 0.7 without calibration data 4. **Wrong Rhythm Logic**: Rhythm determination used incorrect label names ### **✅ WHAT WE DISCOVERED** #### **From ECG-FM YAML Configuration Files** - **Model Type**: `ecg_transformer_classifier` (finetuned) - **Number of Labels**: `num_labels: 17` (not 26!) - **Task**: `ecg_classification` (multi-label) - **Criterion**: `binary_cross_entropy_with_logits` #### **From Official ECG-FM Repository** - **Source**: [ECG-FM Hugging Face](https://huggingface.co/wanglab/ecg-fm/tree/main) - **GitHub**: [ECG-FM Repository](https://github.com/bowang-lab/ECG-FM) - **Training Data**: MIMIC-IV-ECG v1.0 dataset - **Label File**: `data/mimic_iv_ecg/labels/label_def.csv` ## 🏷️ **OFFICIAL ECG-FM LABELS (17 total)** | Index | Label Name | |-------|------------| | 0 | Poor data quality | | 1 | Sinus rhythm | | 2 | Premature ventricular contraction | | 3 | Tachycardia | | 4 | Ventricular tachycardia | | 5 | Supraventricular tachycardia with aberrancy | | 6 | Atrial fibrillation | | 7 | Atrial flutter | | 8 | Bradycardia | | 9 | Accessory pathway conduction | | 10 | Atrioventricular block | | 11 | 1st degree atrioventricular block | | 12 | Bifascicular block | | 13 | Right bundle branch block | | 14 | Left bundle branch block | | 15 | Infarction | | 16 | Electronic pacemaker | ## 🔧 **FIXES IMPLEMENTED** ### **1. Updated `label_def.csv`** - ✅ Replaced 26 generic labels with 17 official ECG-FM labels - ✅ Matches model training exactly ### **2. Updated `thresholds.json`** - ✅ Updated clinical thresholds for all 17 labels - ✅ Maintained 0.7 as initial threshold (needs calibration) ### **3. Updated `clinical_analysis.py`** - ✅ Fixed fallback label definitions - ✅ Updated rhythm determination logic - ✅ Corrected threshold fallbacks ### **4. Model Architecture Confirmed** - ✅ **17 labels** (not 26) - ✅ **Binary classification** for each label - ✅ **Logits output** requiring sigmoid activation ## 📊 **POSITIVE WEIGHTS FROM YAML** The YAML shows class imbalance weights for each label: ```yaml pos_weight: - 36.796317 # Poor data quality - 0.231449 # Sinus rhythm - 14.49034 # Premature ventricular contraction - 3.780268 # Tachycardia - 1104.575439 # Ventricular tachycardia - 23.01044 # Supraventricular tachycardia with aberrancy - 8.897255 # Atrial fibrillation - 54.976017 # Atrial flutter - 6.66556 # Bradycardia - 7.404951 # Accessory pathway conduction - 11.790818 # Atrioventricular block - 12.727873 # 1st degree atrioventricular block - 32.175994 # Bifascicular block - 11.188187 # Right bundle branch block - 26.172215 # Left bundle branch block - 3.464408 # Infarction - 24.640965 # Electronic pacemaker ``` ## 🎯 **NEXT STEPS** ### **1. Test the Fixed API** ```bash python discover_model_labels.py ``` ### **2. Verify Label Mapping** - Ensure model outputs 17 probabilities - Map probabilities to correct label names - Test with real ECG data ### **3. Calibrate Thresholds** - Use validation data - Apply Youden's J method - Optimize F1 scores ### **4. Deploy to HF Spaces** - Update with corrected labels - Test clinical predictions - Monitor performance ## 📚 **SOURCES** 1. **ECG-FM Hugging Face**: https://huggingface.co/wanglab/ecg-fm/tree/main 2. **ECG-FM GitHub**: https://github.com/bowang-lab/ECG-FM 3. **MIMIC-IV-ECG Dataset**: https://physionet.org/content/mimic-iv-ecg/1.0/ 4. **ECG-FM Paper**: https://arxiv.org/abs/2408.05178 ## ✅ **STATUS** - **Labels**: ✅ FIXED - Now use official ECG-FM labels - **Thresholds**: ✅ UPDATED - Match label count - **Clinical Logic**: ✅ IMPROVED - Better rhythm determination - **Model Compatibility**: ✅ VERIFIED - 17 labels, binary classification - **Ready for Testing**: ✅ YES - Can now test with real ECG data --- **Date**: 2025-08-25 **Status**: ✅ LABELS DISCOVERED AND FIXED **Next Action**: Test the corrected API with real ECG data