ecg-fm-api / batch_ecg_analysis_kvh.py
mystic_CBK
Deploy ECG-FM Dual Model API v2.0.0
31b6ae7
#!/usr/bin/env python3
"""
Batch ECG Analysis Script for KVH High School
Processes all ECGs in ecg_uploads_KVHSchool/ directory using ECG-FM Production API
Updates KvhHighSchoollist.csv with comprehensive clinical analysis results
NO DELAYS between analyses for maximum speed
"""
import pandas as pd
import requests
import json
import time
import os
from typing import Dict, Any, List
from datetime import datetime
import traceback
# Configuration
API_BASE_URL = "https://mystic-cbk-ecg-fm-api.hf.space"
ECG_DIR = "../ecg_uploads_KVHSchool/"
INDEX_FILE = "../KvhHighSchoollist.csv"
OUTPUT_FILE = "../KvhHighSchoollist_ECG_FM_Enhanced.csv"
# ECG-FM Analysis Results Structure
class ECGFMAnalysis:
def __init__(self):
self.rhythm = None
self.heart_rate = None
self.qrs_duration = None
self.qt_interval = None
self.pr_interval = None
self.axis_deviation = None
self.abnormalities = []
self.confidence = None
self.signal_quality = None
self.features_count = None
self.processing_time = None
self.analysis_timestamp = None
self.api_status = None
self.error_message = None
def load_ecg_data(file_path: str) -> Dict[str, Any]:
"""Load ECG data from CSV file"""
try:
df = pd.read_csv(file_path)
# Convert to the format expected by the API
signal = [df[col].tolist() for col in df.columns]
# Create enhanced payload with clinical metadata
payload = {
"signal": signal,
"fs": 500, # Standard ECG sampling rate
"lead_names": ["I", "II", "III", "aVR", "aVL", "aVF", "V1", "V2", "V3", "V4", "V5", "V6"],
"recording_duration": len(signal[0]) / 500.0
}
return payload
except Exception as e:
print(f"❌ Error loading ECG data from {file_path}: {e}")
return None
def analyze_ecg_with_api(ecg_file: str, patient_info: Dict[str, Any]) -> ECGFMAnalysis:
"""Analyze single ECG using ECG-FM Production API"""
analysis = ECGFMAnalysis()
analysis.analysis_timestamp = datetime.now().isoformat()
try:
# Load ECG data
ecg_path = os.path.join(ECG_DIR, ecg_file)
payload = load_ecg_data(ecg_path)
if payload is None:
analysis.api_status = "Failed to load ECG data"
return analysis
print(f" πŸ“ Processing: {ecg_file}")
print(f" πŸ‘€ Patient: {patient_info['Patient Name']} ({patient_info['Age']} {patient_info['Gender']})")
# Test API health first
try:
health_response = requests.get(f"{API_BASE_URL}/health", timeout=30)
if health_response.status_code != 200:
analysis.api_status = f"API unhealthy: {health_response.status_code}"
return analysis
except Exception as e:
analysis.api_status = f"API connection failed: {str(e)}"
return analysis
# Perform full ECG analysis
start_time = time.time()
response = requests.post(
f"{API_BASE_URL}/analyze",
json=payload,
timeout=180 # 3 minutes for full analysis
)
total_time = time.time() - start_time
if response.status_code == 200:
analysis_data = response.json()
# Extract clinical analysis
clinical = analysis_data['clinical_analysis']
analysis.rhythm = clinical['rhythm']
analysis.heart_rate = clinical['heart_rate']
analysis.qrs_duration = clinical['qrs_duration']
analysis.qt_interval = clinical['qt_interval']
analysis.pr_interval = clinical['pr_interval']
analysis.axis_deviation = clinical['axis_deviation']
analysis.abnormalities = clinical['abnormalities']
analysis.confidence = clinical['confidence']
# Extract technical metrics
analysis.signal_quality = analysis_data['signal_quality']
analysis.features_count = len(analysis_data['features'])
analysis.processing_time = analysis_data['processing_time']
analysis.api_status = "Success"
print(f" βœ… Analysis completed in {analysis.processing_time}s")
print(f" πŸ₯ Rhythm: {analysis.rhythm}, HR: {analysis.heart_rate} BPM")
print(f" πŸ” Quality: {analysis.signal_quality}, Confidence: {analysis.confidence:.2f}")
else:
analysis.api_status = f"API error: {response.status_code}"
analysis.error_message = response.text
print(f" ❌ API error: {response.status_code} - {response.text}")
except Exception as e:
analysis.api_status = f"Processing error: {str(e)}"
analysis.error_message = traceback.format_exc()
print(f" ❌ Processing error: {str(e)}")
return analysis
def update_index_with_ecg_fm_results(index_df: pd.DataFrame) -> pd.DataFrame:
"""Update index DataFrame with ECG-FM analysis results"""
# Add new columns for ECG-FM results
new_columns = [
'ECG_FM_Rhythm', 'ECG_FM_HeartRate', 'ECG_FM_QRS_Duration',
'ECG_FM_QT_Interval', 'ECG_FM_PR_Interval', 'ECG_FM_AxisDeviation',
'ECG_FM_Abnormalities', 'ECG_FM_Confidence', 'ECG_FM_SignalQuality',
'ECG_FM_FeaturesCount', 'ECG_FM_ProcessingTime', 'ECG_FM_AnalysisTimestamp',
'ECG_FM_APIStatus', 'ECG_FM_ErrorMessage'
]
for col in new_columns:
index_df[col] = None
# Process each ECG file
total_files = len(index_df)
successful_analyses = 0
failed_analyses = 0
print(f"\nπŸš€ Starting batch ECG analysis for {total_files} patients...")
print("=" * 80)
print("⚑ NO DELAYS - Maximum speed processing enabled!")
print("=" * 80)
for index, row in index_df.iterrows():
try:
# Extract ECG filename from path
ecg_path = row['ECG File Path']
if pd.isna(ecg_path) or ecg_path == "":
print(f"⚠️ Skipping row {index + 1}: No ECG file path")
continue
ecg_file = os.path.basename(ecg_path)
# Check if ECG file exists
if not os.path.exists(os.path.join(ECG_DIR, ecg_file)):
print(f"⚠️ Skipping row {index + 1}: ECG file not found: {ecg_file}")
continue
print(f"\nπŸ“Š Processing {index + 1}/{total_files}: {ecg_file}")
# Perform ECG analysis
analysis = analyze_ecg_with_api(ecg_file, row)
# Update DataFrame with results
index_df.at[index, 'ECG_FM_Rhythm'] = analysis.rhythm
index_df.at[index, 'ECG_FM_HeartRate'] = analysis.heart_rate
index_df.at[index, 'ECG_FM_QRS_Duration'] = analysis.qrs_duration
index_df.at[index, 'ECG_FM_QT_Interval'] = analysis.qt_interval
index_df.at[index, 'ECG_FM_PR_Interval'] = analysis.pr_interval
index_df.at[index, 'ECG_FM_AxisDeviation'] = analysis.axis_deviation
index_df.at[index, 'ECG_FM_Abnormalities'] = '; '.join(analysis.abnormalities) if analysis.abnormalities else None
index_df.at[index, 'ECG_FM_Confidence'] = analysis.confidence
index_df.at[index, 'ECG_FM_SignalQuality'] = analysis.signal_quality
index_df.at[index, 'ECG_FM_FeaturesCount'] = analysis.features_count
index_df.at[index, 'ECG_FM_ProcessingTime'] = analysis.processing_time
index_df.at[index, 'ECG_FM_AnalysisTimestamp'] = analysis.analysis_timestamp
index_df.at[index, 'ECG_FM_APIStatus'] = analysis.api_status
index_df.at[index, 'ECG_FM_ErrorMessage'] = analysis.error_message
if analysis.api_status == "Success":
successful_analyses += 1
else:
failed_analyses += 1
# NO DELAY - Maximum speed processing
# time.sleep(2) # REMOVED FOR MAXIMUM SPEED
except Exception as e:
print(f"❌ Error processing row {index + 1}: {str(e)}")
index_df.at[index, 'ECG_FM_APIStatus'] = f"Row processing error: {str(e)}"
failed_analyses += 1
print("\n" + "=" * 80)
print("🏁 BATCH ANALYSIS COMPLETE!")
print(f"πŸ“Š Total files: {total_files}")
print(f"βœ… Successful analyses: {successful_analyses}")
print(f"❌ Failed analyses: {failed_analyses}")
print(f"πŸ“ˆ Success rate: {(successful_analyses/total_files)*100:.1f}%")
return index_df
def generate_analysis_summary(index_df: pd.DataFrame) -> None:
"""Generate summary statistics from the enhanced dataset"""
print("\nπŸ“Š ECG-FM ANALYSIS SUMMARY")
print("=" * 50)
# Filter successful analyses
successful_df = index_df[index_df['ECG_FM_APIStatus'] == 'Success']
if len(successful_df) == 0:
print("❌ No successful analyses to summarize")
return
print(f"πŸ“ Total successful analyses: {len(successful_df)}")
# Heart Rate Analysis
hr_data = successful_df['ECG_FM_HeartRate'].dropna()
if len(hr_data) > 0:
print(f"πŸ’“ Heart Rate - Mean: {hr_data.mean():.1f} BPM, Range: {hr_data.min():.1f}-{hr_data.max():.1f} BPM")
# QRS Duration Analysis
qrs_data = successful_df['ECG_FM_QRS_Duration'].dropna()
if len(qrs_data) > 0:
print(f"πŸ“ QRS Duration - Mean: {qrs_data.mean():.1f} ms, Range: {qrs_data.min():.1f}-{qrs_data.max():.1f} ms")
# QT Interval Analysis
qt_data = successful_df['ECG_FM_QT_Interval'].dropna()
if len(qt_data) > 0:
print(f"⏱️ QT Interval - Mean: {qt_data.mean():.1f} ms, Range: {qt_data.min():.1f}-{qt_data.max():.1f} ms")
# Signal Quality Distribution
quality_counts = successful_df['ECG_FM_SignalQuality'].value_counts()
print(f"πŸ” Signal Quality Distribution:")
for quality, count in quality_counts.items():
print(f" {quality}: {count} ({count/len(successful_df)*100:.1f}%)")
# Confidence Analysis
conf_data = successful_df['ECG_FM_Confidence'].dropna()
if len(conf_data) > 0:
print(f"🎯 Analysis Confidence - Mean: {conf_data.mean():.2f}, Range: {conf_data.min():.2f}-{conf_data.max():.2f}")
# Processing Time Analysis
time_data = successful_df['ECG_FM_ProcessingTime'].dropna()
if len(time_data) > 0:
print(f"⚑ Processing Time - Mean: {time_data.mean():.3f}s, Range: {time_data.min():.3f}-{time_data.max():.3f}s")
def main():
"""Main function to run batch ECG analysis for KVH High School"""
print("πŸ§ͺ ECG-FM BATCH ANALYSIS SYSTEM - KVH HIGH SCHOOL")
print("=" * 70)
print(f"🌐 API URL: {API_BASE_URL}")
print(f"πŸ“ ECG Directory: {ECG_DIR}")
print(f"πŸ“‹ Index File: {INDEX_FILE}")
print(f"πŸ’Ύ Output File: {OUTPUT_FILE}")
print("⚑ NO DELAYS - Maximum speed processing!")
print()
# Check if files exist
if not os.path.exists(INDEX_FILE):
print(f"❌ Index file not found: {INDEX_FILE}")
return
if not os.path.exists(ECG_DIR):
print(f"❌ ECG directory not found: {ECG_DIR}")
return
# Load index file
try:
print("πŸ“ Loading patient index file...")
index_df = pd.read_csv(INDEX_FILE)
print(f"βœ… Loaded {len(index_df)} patient records")
except Exception as e:
print(f"❌ Error loading index file: {e}")
return
# Check API health
try:
print("πŸ₯ Checking API health...")
health_response = requests.get(f"{API_BASE_URL}/health", timeout=30)
if health_response.status_code == 200:
health_data = health_response.json()
print(f"βœ… API healthy - Models loaded: {health_data['models_loaded']}")
else:
print(f"⚠️ API health check failed: {health_response.status_code}")
proceed = input("Continue anyway? (y/n): ")
if proceed.lower() != 'y':
return
except Exception as e:
print(f"⚠️ API health check failed: {e}")
proceed = input("Continue anyway? (y/n): ")
if proceed.lower() != 'y':
return
# Process all ECGs
enhanced_df = update_index_with_ecg_fm_results(index_df)
# Generate summary
generate_analysis_summary(enhanced_df)
# Save enhanced dataset
try:
print(f"\nπŸ’Ύ Saving enhanced dataset to: {OUTPUT_FILE}")
enhanced_df.to_csv(OUTPUT_FILE, index=False)
print("βœ… Enhanced dataset saved successfully!")
# Also save a backup with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
backup_file = f"../KvhHighSchoollist_ECG_FM_Backup_{timestamp}.csv"
enhanced_df.to_csv(backup_file, index=False)
print(f"πŸ’Ύ Backup saved to: {backup_file}")
except Exception as e:
print(f"❌ Error saving enhanced dataset: {e}")
print(f"\nπŸŽ‰ BATCH ANALYSIS COMPLETE!")
print(f"πŸ“Š Enhanced dataset: {OUTPUT_FILE}")
print(f"πŸ”— Monitor your API at: {API_BASE_URL}")
if __name__ == "__main__":
main()