Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer | |
| from PIL import Image | |
| from byaldi import RAGMultiModalModel | |
| from qwen_vl_utils import process_vision_info | |
| # Model and processor names | |
| RAG_MODEL = "vidore/colpali" | |
| QWN_MODEL = "Qwen/Qwen2-VL-7B-Instruct" | |
| QWN_PROCESSOR = "Qwen/Qwen2-VL-2B-Instruct" | |
| def load_models(): | |
| RAG = RAGMultiModalModel.from_pretrained(RAG_MODEL) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| QWN_MODEL, | |
| torch_dtype=torch.bfloat16, | |
| trust_remote_code=True | |
| ).cuda().eval() | |
| processor = AutoProcessor.from_pretrained(QWN_PROCESSOR, trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained(QWN_PROCESSOR, trust_remote_code=True) | |
| return RAG, model, processor, tokenizer | |
| RAG, model, processor, tokenizer = load_models() | |
| def document_rag(text_query, image): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, | |
| }, | |
| {"type": "text", "text": text_query}, | |
| ], | |
| } | |
| ] | |
| text = tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| generated_ids = model.generate(**inputs, max_new_tokens=50) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = tokenizer.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] | |
| st.title("Document Processor") | |
| uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"]) | |
| text_query = st.text_input("Enter your text query") | |
| if uploaded_file is not None and text_query: | |
| image = Image.open(uploaded_file) | |
| if st.button("Process Document"): | |
| with st.spinner("Processing..."): | |
| result = document_rag(text_query, image) | |
| st.success("Processing complete!") | |
| st.write("Result:", result) |