Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from tensorflow import keras
|
| 3 |
+
from tensorflow.keras import layers
|
| 4 |
+
|
| 5 |
+
from huggingface_hub import from_pretrained_keras
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
max_length = 5
|
| 11 |
+
img_width = 200
|
| 12 |
+
img_height = 50
|
| 13 |
+
|
| 14 |
+
model = from_pretrained_keras("keras-io/ocr-for-captcha", compile=False)
|
| 15 |
+
|
| 16 |
+
prediction_model = keras.models.Model(
|
| 17 |
+
model.get_layer(name="image").input, model.get_layer(name="dense2").output
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
with open("vocab.txt", "r") as f:
|
| 21 |
+
vocab = f.read().splitlines()
|
| 22 |
+
|
| 23 |
+
# Mapping integers back to original characters
|
| 24 |
+
num_to_char = layers.StringLookup(
|
| 25 |
+
vocabulary=vocab, mask_token=None, invert=True
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
def decode_batch_predictions(pred):
|
| 29 |
+
input_len = np.ones(pred.shape[0]) * pred.shape[1]
|
| 30 |
+
# Use greedy search. For complex tasks, you can use beam search
|
| 31 |
+
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][
|
| 32 |
+
:, :max_length
|
| 33 |
+
]
|
| 34 |
+
# Iterate over the results and get back the text
|
| 35 |
+
output_text = []
|
| 36 |
+
for res in results:
|
| 37 |
+
res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8")
|
| 38 |
+
output_text.append(res)
|
| 39 |
+
return output_text
|
| 40 |
+
|
| 41 |
+
def classify_image(img_path):
|
| 42 |
+
# 1. Read image
|
| 43 |
+
img = tf.io.read_file(img_path)
|
| 44 |
+
# 2. Decode and convert to grayscale
|
| 45 |
+
img = tf.io.decode_png(img, channels=1)
|
| 46 |
+
# 3. Convert to float32 in [0, 1] range
|
| 47 |
+
img = tf.image.convert_image_dtype(img, tf.float32)
|
| 48 |
+
# 4. Resize to the desired size
|
| 49 |
+
img = tf.image.resize(img, [img_height, img_width])
|
| 50 |
+
# 5. Transpose the image because we want the time
|
| 51 |
+
# dimension to correspond to the width of the image.
|
| 52 |
+
img = tf.transpose(img, perm=[1, 0, 2])
|
| 53 |
+
img = tf.expand_dims(img, axis=0)
|
| 54 |
+
preds = prediction_model.predict(img)
|
| 55 |
+
pred_text = decode_batch_predictions(preds)
|
| 56 |
+
return pred_text[0]
|
| 57 |
+
|
| 58 |
+
image = gr.inputs.Image(type='filepath')
|
| 59 |
+
text = gr.outputs.Textbox()
|
| 60 |
+
|
| 61 |
+
iface = gr.Interface(classify_image,image,text,
|
| 62 |
+
title="CGIP CAPTCHA RECOGNITION OCR",
|
| 63 |
+
description = "Keras Implementation of OCR model for reading captcha 🤖🦹🏻",
|
| 64 |
+
examples = ["dd764.png","3p4nn.png","ydd3g.png", "268g2.png", "36nx4.png", "3bnyf.png", "5p8fm.png", "8y6b3.png", "mnef5.png", "yxd7m.png",]
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
iface.launch()
|
| 69 |
+
|