Spaces:
Running
Running
chore: device optimization
Browse files
app.py
CHANGED
|
@@ -24,13 +24,21 @@ class MedGemmaSymptomAnalyzer:
|
|
| 24 |
logger.info("Initializing MedGemma Symptom Analyzer...")
|
| 25 |
|
| 26 |
def load_model(self):
|
| 27 |
-
"""Load MedGemma model with optimizations for deployment"""
|
| 28 |
if self.model_loaded:
|
| 29 |
return True
|
| 30 |
|
| 31 |
model_name = "google/medgemma-4b-it"
|
| 32 |
logger.info(f"Loading model: {model_name}")
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
try:
|
| 35 |
# Get HF token from environment (set in Hugging Face Spaces secrets)
|
| 36 |
hf_token = os.getenv("HF_TOKEN")
|
|
@@ -39,33 +47,124 @@ class MedGemmaSymptomAnalyzer:
|
|
| 39 |
else:
|
| 40 |
logger.warning("HF_TOKEN not found in environment variables")
|
| 41 |
|
| 42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
logger.info("Loading tokenizer...")
|
| 44 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 45 |
model_name,
|
| 46 |
-
token=hf_token
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
-
logger.info("Loading model...")
|
| 50 |
-
# Simplified loading for CPU/compatibility
|
| 51 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
model_name,
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
token=hf_token
|
| 57 |
)
|
| 58 |
|
|
|
|
| 59 |
if self.tokenizer.pad_token is None:
|
| 60 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
self.model_loaded = True
|
| 63 |
-
logger.info("Model loaded successfully!")
|
| 64 |
return True
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
except Exception as e:
|
| 67 |
logger.error(f"Failed to load model {model_name}: {str(e)}", exc_info=True)
|
| 68 |
logger.warning("Falling back to demo mode due to model loading failure")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
self.model = None
|
| 70 |
self.tokenizer = None
|
| 71 |
self.model_loaded = False
|
|
|
|
| 24 |
logger.info("Initializing MedGemma Symptom Analyzer...")
|
| 25 |
|
| 26 |
def load_model(self):
|
| 27 |
+
"""Load MedGemma model with optimizations for deployment and CPU compatibility"""
|
| 28 |
if self.model_loaded:
|
| 29 |
return True
|
| 30 |
|
| 31 |
model_name = "google/medgemma-4b-it"
|
| 32 |
logger.info(f"Loading model: {model_name}")
|
| 33 |
|
| 34 |
+
# Detect available device and log system info
|
| 35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
logger.info(f"Device detected: {device}")
|
| 37 |
+
if device == "cpu":
|
| 38 |
+
logger.info(f"CPU threads available: {torch.get_num_threads()}")
|
| 39 |
+
else:
|
| 40 |
+
logger.info(f"CUDA device: {torch.cuda.get_device_name()}")
|
| 41 |
+
|
| 42 |
try:
|
| 43 |
# Get HF token from environment (set in Hugging Face Spaces secrets)
|
| 44 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
| 47 |
else:
|
| 48 |
logger.warning("HF_TOKEN not found in environment variables")
|
| 49 |
|
| 50 |
+
# Optimize settings based on device
|
| 51 |
+
if device == "cpu":
|
| 52 |
+
logger.info("Configuring for CPU-optimized loading...")
|
| 53 |
+
torch_dtype = torch.float32
|
| 54 |
+
device_map = "cpu"
|
| 55 |
+
# Set optimal number of threads for CPU inference
|
| 56 |
+
torch.set_num_threads(max(1, torch.get_num_threads() // 2))
|
| 57 |
+
|
| 58 |
+
# Additional CPU optimizations
|
| 59 |
+
import psutil
|
| 60 |
+
available_memory_gb = psutil.virtual_memory().available / (1024**3)
|
| 61 |
+
logger.info(f"Available memory: {available_memory_gb:.1f} GB")
|
| 62 |
+
|
| 63 |
+
# Enable memory-efficient loading for low-memory systems
|
| 64 |
+
cpu_loading_kwargs = {
|
| 65 |
+
"low_cpu_mem_usage": True,
|
| 66 |
+
"torch_dtype": torch_dtype,
|
| 67 |
+
"device_map": device_map
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
# Use offloading for very low memory systems (< 8GB available)
|
| 71 |
+
if available_memory_gb < 8:
|
| 72 |
+
logger.warning("Low memory detected, enabling aggressive memory optimizations")
|
| 73 |
+
cpu_loading_kwargs.update({
|
| 74 |
+
"offload_folder": "/tmp/model_offload",
|
| 75 |
+
"offload_state_dict": True
|
| 76 |
+
})
|
| 77 |
+
else:
|
| 78 |
+
logger.info("Configuring for GPU loading...")
|
| 79 |
+
torch_dtype = torch.float16
|
| 80 |
+
device_map = "auto"
|
| 81 |
+
cpu_loading_kwargs = {
|
| 82 |
+
"torch_dtype": torch_dtype,
|
| 83 |
+
"device_map": device_map,
|
| 84 |
+
"low_cpu_mem_usage": True
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
logger.info("Loading tokenizer...")
|
| 88 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 89 |
model_name,
|
| 90 |
+
token=hf_token,
|
| 91 |
+
use_fast=True # Use fast tokenizer for better performance
|
| 92 |
)
|
| 93 |
|
| 94 |
+
logger.info(f"Loading model with dtype={torch_dtype}, device_map={device_map}...")
|
|
|
|
| 95 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 96 |
model_name,
|
| 97 |
+
token=hf_token,
|
| 98 |
+
trust_remote_code=False, # Security best practice
|
| 99 |
+
**cpu_loading_kwargs
|
|
|
|
| 100 |
)
|
| 101 |
|
| 102 |
+
# Ensure pad token is set
|
| 103 |
if self.tokenizer.pad_token is None:
|
| 104 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 105 |
+
|
| 106 |
+
# Move model to appropriate device if needed
|
| 107 |
+
if device == "cpu" and hasattr(self.model, 'to'):
|
| 108 |
+
self.model = self.model.to('cpu')
|
| 109 |
+
logger.info("Model moved to CPU")
|
| 110 |
|
| 111 |
self.model_loaded = True
|
| 112 |
+
logger.info(f"Model loaded successfully on {device}!")
|
| 113 |
return True
|
| 114 |
|
| 115 |
+
except torch.cuda.OutOfMemoryError as e:
|
| 116 |
+
logger.error(f"GPU out of memory: {str(e)}")
|
| 117 |
+
logger.info("Attempting CPU fallback due to GPU memory constraints...")
|
| 118 |
+
try:
|
| 119 |
+
# Force CPU loading if GPU fails
|
| 120 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 121 |
+
model_name,
|
| 122 |
+
token=hf_token,
|
| 123 |
+
trust_remote_code=False,
|
| 124 |
+
torch_dtype=torch.float32,
|
| 125 |
+
device_map="cpu",
|
| 126 |
+
low_cpu_mem_usage=True
|
| 127 |
+
)
|
| 128 |
+
self.model_loaded = True
|
| 129 |
+
logger.info("Model loaded successfully on CPU after GPU failure!")
|
| 130 |
+
return True
|
| 131 |
+
except Exception as fallback_e:
|
| 132 |
+
logger.error(f"CPU fallback also failed: {str(fallback_e)}")
|
| 133 |
+
self.model = None
|
| 134 |
+
self.tokenizer = None
|
| 135 |
+
self.model_loaded = False
|
| 136 |
+
return False
|
| 137 |
+
except ImportError as e:
|
| 138 |
+
logger.error(f"Missing dependency for model loading: {str(e)}")
|
| 139 |
+
logger.info("Please ensure all required packages are installed: pip install -r requirements.txt")
|
| 140 |
+
self.model = None
|
| 141 |
+
self.tokenizer = None
|
| 142 |
+
self.model_loaded = False
|
| 143 |
+
return False
|
| 144 |
+
except OSError as e:
|
| 145 |
+
if "disk quota exceeded" in str(e).lower() or "no space left" in str(e).lower():
|
| 146 |
+
logger.error("Insufficient disk space for model loading")
|
| 147 |
+
logger.info("Please free up disk space and try again")
|
| 148 |
+
elif "connection" in str(e).lower() or "timeout" in str(e).lower():
|
| 149 |
+
logger.error("Network connection issue during model download")
|
| 150 |
+
logger.info("Please check your internet connection and try again")
|
| 151 |
+
else:
|
| 152 |
+
logger.error(f"OS error during model loading: {str(e)}")
|
| 153 |
+
self.model = None
|
| 154 |
+
self.tokenizer = None
|
| 155 |
+
self.model_loaded = False
|
| 156 |
+
return False
|
| 157 |
except Exception as e:
|
| 158 |
logger.error(f"Failed to load model {model_name}: {str(e)}", exc_info=True)
|
| 159 |
logger.warning("Falling back to demo mode due to model loading failure")
|
| 160 |
+
|
| 161 |
+
# Provide helpful troubleshooting info
|
| 162 |
+
if device == "cpu":
|
| 163 |
+
logger.info("CPU loading troubleshooting tips:")
|
| 164 |
+
logger.info("- Ensure sufficient RAM (minimum 8GB recommended)")
|
| 165 |
+
logger.info("- Check that PyTorch CPU version is installed")
|
| 166 |
+
logger.info("- Verify HuggingFace token is valid")
|
| 167 |
+
|
| 168 |
self.model = None
|
| 169 |
self.tokenizer = None
|
| 170 |
self.model_loaded = False
|