Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- .gitattributes +1 -0
- UNI-LI.mp4 +3 -0
- app.py +198 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
UNI-LI.mp4 filter=lfs diff=lfs merge=lfs -text
|
UNI-LI.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b162798ec5a32893f4b66cc7aae2b49a0ed142331ceae3e84ce3c7bce45b1a77
|
| 3 |
+
size 4195911
|
app.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import uuid
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import spaces
|
| 8 |
+
import supervision as sv
|
| 9 |
+
import torch # Ensuring torch import remains
|
| 10 |
+
|
| 11 |
+
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
|
| 12 |
+
|
| 13 |
+
# Detect if CUDA is available and set the device accordingly
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
|
| 16 |
+
# Load the processor and model from Hugging Face
|
| 17 |
+
processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
|
| 18 |
+
model = AutoModelForZeroShotObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(device)
|
| 19 |
+
|
| 20 |
+
# Custom CSS to enhance text area visibility
|
| 21 |
+
css = """
|
| 22 |
+
.feedback textarea {font-size: 24px !important}
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
# Initialize global variables
|
| 26 |
+
global classes
|
| 27 |
+
global detections
|
| 28 |
+
global labels
|
| 29 |
+
global threshold
|
| 30 |
+
|
| 31 |
+
# Set default values
|
| 32 |
+
classes = "person, university, class, Liectenstein"
|
| 33 |
+
detections = None
|
| 34 |
+
labels = None
|
| 35 |
+
threshold = 0.2
|
| 36 |
+
|
| 37 |
+
# Instantiate annotators for bounding boxes, masks, and labels
|
| 38 |
+
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
|
| 39 |
+
MASK_ANNOTATOR = sv.MaskAnnotator()
|
| 40 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
| 41 |
+
|
| 42 |
+
# Frame subsampling factor for video processing efficiency
|
| 43 |
+
SUBSAMPLE = 2
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def annotate_image(input_image, detections, labels) -> np.ndarray:
|
| 47 |
+
"""Applies mask, bounding box, and label annotations to a given image."""
|
| 48 |
+
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
|
| 49 |
+
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
|
| 50 |
+
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
|
| 51 |
+
return output_image
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@spaces.GPU
|
| 55 |
+
def process_video(input_video, confidence_threshold, classes_new, progress=gr.Progress(track_tqdm=True)):
|
| 56 |
+
"""Processes the input video frame by frame, performs object detection, and saves the output video."""
|
| 57 |
+
global detections, labels, classes, threshold
|
| 58 |
+
classes = classes_new
|
| 59 |
+
threshold = confidence_threshold
|
| 60 |
+
|
| 61 |
+
# Generate a unique file name for the output video
|
| 62 |
+
result_file_name = f"output_{uuid.uuid4()}.mp4"
|
| 63 |
+
|
| 64 |
+
# Read input video and set up output video writer
|
| 65 |
+
cap = cv2.VideoCapture(input_video)
|
| 66 |
+
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # MP4 codec
|
| 67 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 68 |
+
width, height = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 69 |
+
desired_fps = fps // SUBSAMPLE
|
| 70 |
+
iterating, frame = cap.read()
|
| 71 |
+
|
| 72 |
+
# Prepare video writer for output
|
| 73 |
+
segment_file = cv2.VideoWriter(result_file_name, video_codec, desired_fps, (width, height))
|
| 74 |
+
batch, frames, predict_index = [], [], []
|
| 75 |
+
n_frames = 0
|
| 76 |
+
|
| 77 |
+
while iterating:
|
| 78 |
+
if n_frames % SUBSAMPLE == 0:
|
| 79 |
+
predict_index.append(len(frames))
|
| 80 |
+
batch.append(frame)
|
| 81 |
+
frames.append(frame)
|
| 82 |
+
|
| 83 |
+
# Process a batch of frames at once
|
| 84 |
+
if len(batch) == desired_fps:
|
| 85 |
+
classes_list = classes.strip().split(",")
|
| 86 |
+
results, fps_value = query(batch, classes_list, threshold, (width, height))
|
| 87 |
+
|
| 88 |
+
for i, frame in enumerate(frames):
|
| 89 |
+
if i in predict_index:
|
| 90 |
+
batch_idx = predict_index.index(i)
|
| 91 |
+
detections = sv.Detections(
|
| 92 |
+
xyxy=results[batch_idx]["boxes"].cpu().detach().numpy(),
|
| 93 |
+
confidence=results[batch_idx]["scores"].cpu().detach().numpy(),
|
| 94 |
+
class_id=np.array([classes_list.index(result_class) for result_class in results[batch_idx]["classes"]]),
|
| 95 |
+
data={"class_name": results[batch_idx]["classes"]},
|
| 96 |
+
)
|
| 97 |
+
labels = results[batch_idx]["classes"]
|
| 98 |
+
|
| 99 |
+
frame = annotate_image(input_image=frame, detections=detections, labels=labels)
|
| 100 |
+
segment_file.write(frame)
|
| 101 |
+
|
| 102 |
+
# Finalize and yield result
|
| 103 |
+
segment_file.release()
|
| 104 |
+
yield result_file_name, gr.Markdown(f'<h3 style="text-align: center;">Model inference FPS (batched): {fps_value * len(batch):.2f}</h3>')
|
| 105 |
+
result_file_name = f"output_{uuid.uuid4()}.mp4"
|
| 106 |
+
segment_file = cv2.VideoWriter(result_file_name, video_codec, desired_fps, (width, height))
|
| 107 |
+
batch.clear()
|
| 108 |
+
frames.clear()
|
| 109 |
+
predict_index.clear()
|
| 110 |
+
|
| 111 |
+
iterating, frame = cap.read()
|
| 112 |
+
n_frames += 1
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def query(frame_batch, classes, confidence_threshold, size=(640, 480)):
|
| 116 |
+
"""Runs inference on a batch of frames and returns the results."""
|
| 117 |
+
inputs = processor(images=frame_batch, text=[classes] * len(frame_batch), return_tensors="pt").to(device)
|
| 118 |
+
|
| 119 |
+
with torch.no_grad():
|
| 120 |
+
start_time = time.time()
|
| 121 |
+
outputs = model(**inputs)
|
| 122 |
+
fps_value = 1 / (time.time() - start_time)
|
| 123 |
+
|
| 124 |
+
target_sizes = torch.tensor([size[::-1]] * len(frame_batch))
|
| 125 |
+
results = processor.post_process_grounded_object_detection(
|
| 126 |
+
outputs=outputs, classes=[classes] * len(frame_batch), score_threshold=confidence_threshold, target_sizes=target_sizes
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
return results, fps_value
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def set_classes(classes_input):
|
| 133 |
+
"""Updates the list of classes for detection."""
|
| 134 |
+
global classes
|
| 135 |
+
classes = classes_input
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def set_confidence_threshold(confidence_threshold_input):
|
| 139 |
+
"""Updates the confidence threshold for detection."""
|
| 140 |
+
global threshold
|
| 141 |
+
threshold = confidence_threshold_input
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# Custom footer for the Gradio interface
|
| 145 |
+
footer = """
|
| 146 |
+
<div style="text-align: center; margin-top: 20px;">
|
| 147 |
+
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
| 148 |
+
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
|
| 149 |
+
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
|
| 150 |
+
<a href="https://huggingface.co/omlab/omdet-turbo-swin-tiny-hf" target="_blank">omdet-turbo-swin-tiny-hf repo in HF</a>
|
| 151 |
+
<br>
|
| 152 |
+
Made with 💖 by Pejman Ebrahimi
|
| 153 |
+
</div>
|
| 154 |
+
"""
|
| 155 |
+
|
| 156 |
+
# Gradio Interface with the customized theme and DuplicateButton
|
| 157 |
+
with gr.Blocks(theme='ParityError/Anime', css=css) as demo:
|
| 158 |
+
gr.Markdown("## Real Time Object Detection with OmDet-Turbo")
|
| 159 |
+
gr.Markdown(
|
| 160 |
+
"""
|
| 161 |
+
This is a demo for real-time open vocabulary object detection using OmDet-Turbo.<br>
|
| 162 |
+
It utilizes ZeroGPU, which allocates GPU for the first inference.<br>
|
| 163 |
+
The actual inference FPS is displayed after processing, providing an accurate assessment of performance.<br>
|
| 164 |
+
"""
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
input_video = gr.Video(label="Upload Video")
|
| 169 |
+
output_video = gr.Video(label="Processed Video", streaming=True, autoplay=True)
|
| 170 |
+
actual_fps = gr.Markdown("", visible=False)
|
| 171 |
+
|
| 172 |
+
with gr.Row():
|
| 173 |
+
classes = gr.Textbox("person, university, class, Liectenstein", label="Objects to Detect (comma separated)", elem_classes="feedback", scale=3)
|
| 174 |
+
conf = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, value=0.2, step=0.05)
|
| 175 |
+
|
| 176 |
+
with gr.Row():
|
| 177 |
+
submit = gr.Button("Run Detection", variant="primary")
|
| 178 |
+
duplicate_space = gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
| 179 |
+
|
| 180 |
+
example_videos = gr.Examples(
|
| 181 |
+
examples=[["./UNI-LI.mp4", 0.3, "person, university, class, Liectenstein"]],
|
| 182 |
+
inputs=[input_video, conf, classes],
|
| 183 |
+
outputs=[output_video, actual_fps]
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
classes.submit(set_classes, classes)
|
| 187 |
+
conf.change(set_confidence_threshold, conf)
|
| 188 |
+
|
| 189 |
+
submit.click(
|
| 190 |
+
fn=process_video,
|
| 191 |
+
inputs=[input_video, conf, classes],
|
| 192 |
+
outputs=[output_video, actual_fps]
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
gr.HTML(footer)
|
| 196 |
+
|
| 197 |
+
if __name__ == "__main__":
|
| 198 |
+
demo.launch(show_error=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
timm
|
| 3 |
+
numpy==1.26.3
|
| 4 |
+
git+https://github.com/yonigozlan/transformers.git@add-om-det-turbo
|
| 5 |
+
opencv-python
|
| 6 |
+
supervision
|
| 7 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@66349fe26827e3a3c15b738a1177e95fec7f5554#subdirectory=client/python
|
| 8 |
+
https://gradio-pypi-previews.s3.amazonaws.com/66349fe26827e3a3c15b738a1177e95fec7f5554/gradio-4.42.0-py3-none-any.whl
|