Spaces:
Running
Running
Deploy Gradio app with multiple files
Browse files- app.py +59 -0
- models.py +62 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from models import generate_image, MODEL_ID
|
| 3 |
+
|
| 4 |
+
def create_ui():
|
| 5 |
+
with gr.Blocks(title=f"Tencent HunyuanImage-3.0 Demo") as demo:
|
| 6 |
+
gr.HTML(
|
| 7 |
+
f"<div style='text-align: center; max-width: 700px; margin: 0 auto;'>"
|
| 8 |
+
f"<h1>Tencent {MODEL_ID.split('/')[-1]}</h1>"
|
| 9 |
+
f"<p>Generate images using Tencent's state-of-the-art model hosted by FAL AI.</p>"
|
| 10 |
+
f"Built with <a href='https://huggingface.co/spaces/akhaliq/anycoder' target='_blank'>anycoder</a>"
|
| 11 |
+
f"</div>"
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
with gr.Row():
|
| 15 |
+
with gr.Column(scale=1):
|
| 16 |
+
prompt_input = gr.Textbox(
|
| 17 |
+
label="Prompt",
|
| 18 |
+
placeholder="e.g., Astronaut riding a horse, 4K, realistic photo, cinematic lighting",
|
| 19 |
+
lines=4
|
| 20 |
+
)
|
| 21 |
+
generate_btn = gr.Button("🎨 Generate Image", variant="primary")
|
| 22 |
+
|
| 23 |
+
with gr.Column(scale=1):
|
| 24 |
+
output_image = gr.Image(
|
| 25 |
+
label="Generated Image",
|
| 26 |
+
height=512,
|
| 27 |
+
width=512,
|
| 28 |
+
interactive=False,
|
| 29 |
+
show_download_button=True
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Set up the event listener
|
| 33 |
+
generate_btn.click(
|
| 34 |
+
fn=generate_image,
|
| 35 |
+
inputs=[prompt_input],
|
| 36 |
+
outputs=[output_image],
|
| 37 |
+
# Use queue and concurrency for robustness when dealing with external APIs
|
| 38 |
+
queue=True
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Example usage guidance
|
| 42 |
+
gr.Examples(
|
| 43 |
+
examples=[
|
| 44 |
+
"A dramatic black and white photo of a futuristic motorcycle gang leader in a rainy city street.",
|
| 45 |
+
"High quality photorealistic close-up portrait of an elderly wizard, highly detailed, dramatic lighting.",
|
| 46 |
+
"A detailed watercolor painting of a small red fox sleeping on a pile of autumn leaves."
|
| 47 |
+
],
|
| 48 |
+
inputs=prompt_input,
|
| 49 |
+
outputs=output_image,
|
| 50 |
+
fn=generate_image,
|
| 51 |
+
cache_examples=False,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
return demo
|
| 55 |
+
|
| 56 |
+
if __name__ == "__main__":
|
| 57 |
+
app = create_ui()
|
| 58 |
+
app.queue()
|
| 59 |
+
app.launch()
|
models.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from huggingface_hub import InferenceClient
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from typing import Union
|
| 6 |
+
|
| 7 |
+
# Load environment variables (useful for local testing)
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
# --- Model Configuration ---
|
| 12 |
+
MODEL_ID = "tencent/HunyuanImage-3.0"
|
| 13 |
+
PROVIDER = "fal-ai"
|
| 14 |
+
BILL_TO = "huggingface"
|
| 15 |
+
|
| 16 |
+
# Initialize client
|
| 17 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 18 |
+
CLIENT: Union[InferenceClient, None] = None
|
| 19 |
+
|
| 20 |
+
if HF_TOKEN:
|
| 21 |
+
try:
|
| 22 |
+
CLIENT = InferenceClient(
|
| 23 |
+
provider=PROVIDER,
|
| 24 |
+
api_key=HF_TOKEN,
|
| 25 |
+
bill_to=BILL_TO,
|
| 26 |
+
)
|
| 27 |
+
print(f"✅ InferenceClient initialized for {MODEL_ID} via {PROVIDER}")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"❌ Error initializing InferenceClient: {e}")
|
| 30 |
+
CLIENT = None
|
| 31 |
+
else:
|
| 32 |
+
print("⚠️ HF_TOKEN environment variable not set. Client will be unavailable.")
|
| 33 |
+
|
| 34 |
+
def generate_image(prompt: str) -> Image.Image:
|
| 35 |
+
"""
|
| 36 |
+
Generates an image from a text prompt using the Hugging Face Inference Client.
|
| 37 |
+
"""
|
| 38 |
+
if not CLIENT:
|
| 39 |
+
raise gr.Error("API client not available. Please ensure HF_TOKEN is set correctly.")
|
| 40 |
+
|
| 41 |
+
if not prompt:
|
| 42 |
+
raise gr.Error("Please provide a prompt.")
|
| 43 |
+
|
| 44 |
+
print(f"Generating image for prompt: '{prompt[:50]}...'")
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
# The output is a PIL.Image object directly
|
| 48 |
+
image = CLIENT.text_to_image(
|
| 49 |
+
prompt,
|
| 50 |
+
model=MODEL_ID,
|
| 51 |
+
# Optional parameters for better quality/control might be added here
|
| 52 |
+
# e.g., negative_prompt="bad quality, low resolution",
|
| 53 |
+
)
|
| 54 |
+
return image
|
| 55 |
+
except Exception as e:
|
| 56 |
+
print(f"Error during image generation: {e}")
|
| 57 |
+
# Check for common API errors
|
| 58 |
+
if "Authentication failed" in str(e):
|
| 59 |
+
raise gr.Error("Authentication failed. Check your HF_TOKEN.")
|
| 60 |
+
if "limit reached" in str(e) or "quota" in str(e):
|
| 61 |
+
raise gr.Error("Rate limit or quota reached for this API endpoint.")
|
| 62 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
huggingface-hub
|
| 3 |
+
Pillow
|
| 4 |
+
python-dotenv
|