Spaces:
Sleeping
Sleeping
| import os | |
| import shutil | |
| import gradio as gr | |
| from ultralytics import YOLO | |
| def predict(img): | |
| path = img.split("\\")[-1].split(".")[0] | |
| print("path", path) | |
| if os.path.exists(r".\runs\segment\predict"): | |
| shutil.rmtree(r".\runs\segment\predict") | |
| model = YOLO("model.pt") | |
| results = model.predict(source=img,save=True, show_labels=False, show_conf=False) | |
| count = 0 | |
| for i in results: | |
| count = len(i.boxes) | |
| cur_path = os.getcwd() | |
| result_img = os.path.join(cur_path,r"runs\segment\predict",f"{path}.jpg") | |
| print("result img",result_img) | |
| return str(count), result_img | |
| with gr.Blocks(title="Pill Counter") as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| img = gr.Image(type="filepath",format="jpg", height=500, width=700) | |
| button = gr.Button() | |
| with gr.Column(): | |
| data_output = gr.Textbox() | |
| img_output = gr.Image(type="filepath") | |
| button.click(fn=predict, inputs=img, outputs=[data_output ,img_output]) | |
| if __name__ == "__main__": | |
| demo.launch(allowed_paths=["runs"]) |