|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from datasets import load_dataset |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, Mxfp4Config |
|
|
|
|
|
from trl import ( |
|
|
ModelConfig, |
|
|
ScriptArguments, |
|
|
SFTConfig, |
|
|
SFTTrainer, |
|
|
TrlParser, |
|
|
get_peft_config, |
|
|
) |
|
|
|
|
|
|
|
|
def main(script_args, training_args, model_args): |
|
|
|
|
|
|
|
|
|
|
|
quantization_config = Mxfp4Config(dequantize=True) |
|
|
model_kwargs = dict( |
|
|
revision=model_args.model_revision, |
|
|
trust_remote_code=model_args.trust_remote_code, |
|
|
attn_implementation=model_args.attn_implementation, |
|
|
torch_dtype=model_args.torch_dtype, |
|
|
use_cache=False if training_args.gradient_checkpointing else True, |
|
|
quantization_config=quantization_config, |
|
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_args.model_name_or_path, **model_kwargs |
|
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
|
model_args.model_name_or_path, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trainer = SFTTrainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
train_dataset=dataset[script_args.dataset_train_split], |
|
|
eval_dataset=dataset[script_args.dataset_test_split] |
|
|
if training_args.eval_strategy != "no" |
|
|
else None, |
|
|
|
|
|
tokenizer=tokenizer, |
|
|
peft_config=get_peft_config(model_args), |
|
|
) |
|
|
|
|
|
trainer.train() |
|
|
trainer.save_model(training_args.output_dir) |
|
|
if training_args.push_to_hub: |
|
|
|
|
|
|
|
|
trainer.push_to_hub() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) |
|
|
script_args, training_args, model_args, _ = parser.parse_args_and_config( |
|
|
return_remaining_strings=True |
|
|
) |
|
|
main(script_args, training_args, model_args) |
|
|
|