import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM from gpt4all import GPT4All st.set_page_config(page_title="AutoGPT with Streamlit", layout="wide") st.title("🤖 AutoGPT Agent (Docker + Streamlit)") st.write("Powered by **DeepSeek + GPT4All**") # Sidebar setup st.sidebar.header("Settings") model_choice = st.sidebar.selectbox("Choose Model", ["DeepSeek", "GPT4All"]) goal = st.text_area("Enter your AI Goal:", placeholder="e.g., Research 5 AI trends and summarize") if st.button("Run Agent"): if model_choice == "DeepSeek": model_name = "deepseek-ai/deepseek-coder-1.3b-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) inputs = tokenizer(goal, return_tensors="pt") output = model.generate(**inputs, max_new_tokens=200) result = tokenizer.decode(output[0], skip_special_tokens=True) elif model_choice == "GPT4All": gpt4all = GPT4All("gpt4all-lora-quantized.bin") with gpt4all.chat_session(): result = gpt4all.generate(goal, max_tokens=200) else: result = "No model selected." st.subheader("Agent Output") st.write(result)