Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -9,6 +9,10 @@ import os
|
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Load the EfficientNet-B0 model
|
| 13 |
model_name = "google/efficientnet-b0"
|
| 14 |
feature_extractor = EfficientNetImageProcessor.from_pretrained(model_name)
|
|
@@ -113,7 +117,7 @@ benefits_mapping = {
|
|
| 113 |
|
| 114 |
# SQLite database initialization for nutrition
|
| 115 |
def init_db():
|
| 116 |
-
conn = sqlite3.connect("fruit_nutrition.db")
|
| 117 |
c = conn.cursor()
|
| 118 |
c.execute('''CREATE TABLE IF NOT EXISTS fruits (
|
| 119 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
@@ -139,7 +143,7 @@ def init_db():
|
|
| 139 |
|
| 140 |
# New database for diabetic-specific information
|
| 141 |
def init_diabetes_db():
|
| 142 |
-
conn = sqlite3.connect("fruit_diabetes.db")
|
| 143 |
c = conn.cursor()
|
| 144 |
c.execute('''CREATE TABLE IF NOT EXISTS diabetes_info (
|
| 145 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
@@ -186,7 +190,7 @@ async def predict(file: UploadFile = File(...)):
|
|
| 186 |
bengali_fruit = fruit_mapping.get(predicted_label, predicted_label)
|
| 187 |
|
| 188 |
# Fetch nutrition from database
|
| 189 |
-
conn = sqlite3.connect("fruit_nutrition.db")
|
| 190 |
c = conn.cursor()
|
| 191 |
c.execute("SELECT vitamin, mineral, carbohydrate, protein, amino_acid FROM fruits WHERE name = ?", (bengali_fruit,))
|
| 192 |
nutrition = c.fetchone()
|
|
@@ -202,7 +206,7 @@ async def predict(file: UploadFile = File(...)):
|
|
| 202 |
})
|
| 203 |
|
| 204 |
# Fetch diabetes info
|
| 205 |
-
conn = sqlite3.connect("fruit_diabetes.db")
|
| 206 |
c = conn.cursor()
|
| 207 |
c.execute("SELECT glycemic_index, portion_size, best_time, precautions FROM diabetes_info WHERE fruit_name = ?", (bengali_fruit,))
|
| 208 |
diabetes_info = c.fetchone()
|
|
|
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
|
| 12 |
+
# Ensure the db directory exists
|
| 13 |
+
DB_DIR = "/app/db"
|
| 14 |
+
os.makedirs(DB_DIR, exist_ok=True)
|
| 15 |
+
|
| 16 |
# Load the EfficientNet-B0 model
|
| 17 |
model_name = "google/efficientnet-b0"
|
| 18 |
feature_extractor = EfficientNetImageProcessor.from_pretrained(model_name)
|
|
|
|
| 117 |
|
| 118 |
# SQLite database initialization for nutrition
|
| 119 |
def init_db():
|
| 120 |
+
conn = sqlite3.connect(os.path.join(DB_DIR, "fruit_nutrition.db"))
|
| 121 |
c = conn.cursor()
|
| 122 |
c.execute('''CREATE TABLE IF NOT EXISTS fruits (
|
| 123 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
|
|
| 143 |
|
| 144 |
# New database for diabetic-specific information
|
| 145 |
def init_diabetes_db():
|
| 146 |
+
conn = sqlite3.connect(os.path.join(DB_DIR, "fruit_diabetes.db"))
|
| 147 |
c = conn.cursor()
|
| 148 |
c.execute('''CREATE TABLE IF NOT EXISTS diabetes_info (
|
| 149 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
|
|
| 190 |
bengali_fruit = fruit_mapping.get(predicted_label, predicted_label)
|
| 191 |
|
| 192 |
# Fetch nutrition from database
|
| 193 |
+
conn = sqlite3.connect(os.path.join(DB_DIR, "fruit_nutrition.db"))
|
| 194 |
c = conn.cursor()
|
| 195 |
c.execute("SELECT vitamin, mineral, carbohydrate, protein, amino_acid FROM fruits WHERE name = ?", (bengali_fruit,))
|
| 196 |
nutrition = c.fetchone()
|
|
|
|
| 206 |
})
|
| 207 |
|
| 208 |
# Fetch diabetes info
|
| 209 |
+
conn = sqlite3.connect(os.path.join(DB_DIR, "fruit_diabetes.db"))
|
| 210 |
c = conn.cursor()
|
| 211 |
c.execute("SELECT glycemic_index, portion_size, best_time, precautions FROM diabetes_info WHERE fruit_name = ?", (bengali_fruit,))
|
| 212 |
diabetes_info = c.fetchone()
|