Spaces:
Running
Running
Commit
·
e5fcf9f
1
Parent(s):
9e4dfcf
cleanup
Browse files- servers/emotion_server.py +1 -52
- servers/emotion_server.py.bak +0 -377
- servers/memory_server.py +1 -44
- servers/memory_server.py.bak +0 -570
- utils/servers/emotion_server.py.bak +0 -377
- utils/servers/memory_server.py.bak +0 -570
servers/emotion_server.py
CHANGED
|
@@ -1,55 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
# from fastmcp import FastMCP, tool
|
| 3 |
-
# import re
|
| 4 |
-
|
| 5 |
-
# app = FastMCP("emotion-server")
|
| 6 |
-
|
| 7 |
-
# _PATTERNS = {
|
| 8 |
-
# "happy": r"\b(happy|grateful|excited|joy|delighted|content|optimistic)\b",
|
| 9 |
-
# "sad": r"\b(sad|down|depressed|cry|lonely|upset|miserable)\b",
|
| 10 |
-
# "angry": r"\b(angry|mad|furious|irritated|pissed|annoyed|resentful)\b",
|
| 11 |
-
# "anxious": r"\b(worried|anxious|nervous|stressed|overwhelmed|scared)\b",
|
| 12 |
-
# "tired": r"\b(tired|exhausted|drained|burnt|sleepy|fatigued)\b",
|
| 13 |
-
# "love": r"\b(love|affection|caring|fond|admire|cherish)\b",
|
| 14 |
-
# "fear": r"\b(afraid|fear|terrified|panicked|shaken)\b",
|
| 15 |
-
# }
|
| 16 |
-
|
| 17 |
-
# _TONES = {"happy":"light","love":"light","sad":"gentle","fear":"gentle",
|
| 18 |
-
# "angry":"calming","anxious":"calming","tired":"gentle"}
|
| 19 |
-
|
| 20 |
-
# def _analyze(text: str) -> dict:
|
| 21 |
-
# t = text.lower()
|
| 22 |
-
# found = [k for k,pat in _PATTERNS.items() if re.search(pat, t)]
|
| 23 |
-
# valence = 0.0
|
| 24 |
-
# if "happy" in found or "love" in found: valence += 0.6
|
| 25 |
-
# if "sad" in found or "fear" in found: valence -= 0.6
|
| 26 |
-
# if "angry" in found: valence -= 0.4
|
| 27 |
-
# if "anxious" in found: valence -= 0.3
|
| 28 |
-
# if "tired" in found: valence -= 0.2
|
| 29 |
-
# arousal = 0.5 + (0.3 if ("angry" in found or "anxious" in found) else 0) - (0.2 if "tired" in found else 0)
|
| 30 |
-
# tone = "neutral"
|
| 31 |
-
# for e in found:
|
| 32 |
-
# if e in _TONES: tone = _TONES[e]; break
|
| 33 |
-
# return {
|
| 34 |
-
# "labels": found or ["neutral"],
|
| 35 |
-
# "valence": max(-1, min(1, round(valence, 2))),
|
| 36 |
-
# "arousal": max(0, min(1, round(arousal, 2))),
|
| 37 |
-
# "tone": tone,
|
| 38 |
-
# }
|
| 39 |
-
|
| 40 |
-
# @tool
|
| 41 |
-
# def analyze(text: str) -> dict:
|
| 42 |
-
# """
|
| 43 |
-
# Analyze user text for emotion.
|
| 44 |
-
# Args:
|
| 45 |
-
# text: str - user message
|
| 46 |
-
# Returns: dict {labels, valence, arousal, tone}
|
| 47 |
-
# """
|
| 48 |
-
# return _analyze(text)
|
| 49 |
-
|
| 50 |
-
# if __name__ == "__main__":
|
| 51 |
-
# app.run() # serves MCP over stdio
|
| 52 |
-
# servers/emotion_server.py
|
| 53 |
from __future__ import annotations
|
| 54 |
|
| 55 |
# ---- FastMCP import shim (works across versions) ----
|
|
|
|
| 1 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from __future__ import annotations
|
| 3 |
|
| 4 |
# ---- FastMCP import shim (works across versions) ----
|
servers/emotion_server.py.bak
DELETED
|
@@ -1,377 +0,0 @@
|
|
| 1 |
-
# # servers/emotion_server.py
|
| 2 |
-
# from fastmcp import FastMCP, tool
|
| 3 |
-
# import re
|
| 4 |
-
|
| 5 |
-
# app = FastMCP("emotion-server")
|
| 6 |
-
|
| 7 |
-
# _PATTERNS = {
|
| 8 |
-
# "happy": r"\b(happy|grateful|excited|joy|delighted|content|optimistic)\b",
|
| 9 |
-
# "sad": r"\b(sad|down|depressed|cry|lonely|upset|miserable)\b",
|
| 10 |
-
# "angry": r"\b(angry|mad|furious|irritated|pissed|annoyed|resentful)\b",
|
| 11 |
-
# "anxious": r"\b(worried|anxious|nervous|stressed|overwhelmed|scared)\b",
|
| 12 |
-
# "tired": r"\b(tired|exhausted|drained|burnt|sleepy|fatigued)\b",
|
| 13 |
-
# "love": r"\b(love|affection|caring|fond|admire|cherish)\b",
|
| 14 |
-
# "fear": r"\b(afraid|fear|terrified|panicked|shaken)\b",
|
| 15 |
-
# }
|
| 16 |
-
|
| 17 |
-
# _TONES = {"happy":"light","love":"light","sad":"gentle","fear":"gentle",
|
| 18 |
-
# "angry":"calming","anxious":"calming","tired":"gentle"}
|
| 19 |
-
|
| 20 |
-
# def _analyze(text: str) -> dict:
|
| 21 |
-
# t = text.lower()
|
| 22 |
-
# found = [k for k,pat in _PATTERNS.items() if re.search(pat, t)]
|
| 23 |
-
# valence = 0.0
|
| 24 |
-
# if "happy" in found or "love" in found: valence += 0.6
|
| 25 |
-
# if "sad" in found or "fear" in found: valence -= 0.6
|
| 26 |
-
# if "angry" in found: valence -= 0.4
|
| 27 |
-
# if "anxious" in found: valence -= 0.3
|
| 28 |
-
# if "tired" in found: valence -= 0.2
|
| 29 |
-
# arousal = 0.5 + (0.3 if ("angry" in found or "anxious" in found) else 0) - (0.2 if "tired" in found else 0)
|
| 30 |
-
# tone = "neutral"
|
| 31 |
-
# for e in found:
|
| 32 |
-
# if e in _TONES: tone = _TONES[e]; break
|
| 33 |
-
# return {
|
| 34 |
-
# "labels": found or ["neutral"],
|
| 35 |
-
# "valence": max(-1, min(1, round(valence, 2))),
|
| 36 |
-
# "arousal": max(0, min(1, round(arousal, 2))),
|
| 37 |
-
# "tone": tone,
|
| 38 |
-
# }
|
| 39 |
-
|
| 40 |
-
# @tool
|
| 41 |
-
# def analyze(text: str) -> dict:
|
| 42 |
-
# """
|
| 43 |
-
# Analyze user text for emotion.
|
| 44 |
-
# Args:
|
| 45 |
-
# text: str - user message
|
| 46 |
-
# Returns: dict {labels, valence, arousal, tone}
|
| 47 |
-
# """
|
| 48 |
-
# return _analyze(text)
|
| 49 |
-
|
| 50 |
-
# if __name__ == "__main__":
|
| 51 |
-
# app.run() # serves MCP over stdio
|
| 52 |
-
# servers/emotion_server.py
|
| 53 |
-
from __future__ import annotations
|
| 54 |
-
# ---- FastMCP import shim (works across versions) ----
|
| 55 |
-
# Ensures: FastMCP is imported and `@tool` is ALWAYS a callable decorator.
|
| 56 |
-
from typing import Callable, Any
|
| 57 |
-
|
| 58 |
-
try:
|
| 59 |
-
from fastmcp import FastMCP # present across versions
|
| 60 |
-
except Exception as e:
|
| 61 |
-
raise ImportError(f"FastMCP missing: {e}")
|
| 62 |
-
|
| 63 |
-
_tool_candidate: Any = None
|
| 64 |
-
# Try common locations
|
| 65 |
-
try:
|
| 66 |
-
from fastmcp import tool as _tool_candidate # newer API: function
|
| 67 |
-
except Exception:
|
| 68 |
-
try:
|
| 69 |
-
from fastmcp.tools import tool as _tool_candidate # older API: function
|
| 70 |
-
except Exception:
|
| 71 |
-
_tool_candidate = None
|
| 72 |
-
|
| 73 |
-
# If we somehow got a module instead of a function, try attribute
|
| 74 |
-
if _tool_candidate is not None and not callable(_tool_candidate):
|
| 75 |
-
try:
|
| 76 |
-
_tool_candidate = _tool_candidate.tool # some builds expose module.tools.tool
|
| 77 |
-
except Exception:
|
| 78 |
-
_tool_candidate = None
|
| 79 |
-
|
| 80 |
-
def tool(*dargs, **dkwargs):
|
| 81 |
-
"""
|
| 82 |
-
Wrapper that behaves correctly in both usages:
|
| 83 |
-
@tool
|
| 84 |
-
@tool(...)
|
| 85 |
-
If real decorator exists, delegate. Otherwise:
|
| 86 |
-
- If called as @tool (i.e., first arg is fn), return fn (no-op).
|
| 87 |
-
- If called as @tool(...), return a decorator that returns fn (no-op).
|
| 88 |
-
"""
|
| 89 |
-
if callable(_tool_candidate):
|
| 90 |
-
return _tool_candidate(*dargs, **dkwargs)
|
| 91 |
-
|
| 92 |
-
# No real decorator available — provide no-op behavior.
|
| 93 |
-
if dargs and callable(dargs[0]) and not dkwargs:
|
| 94 |
-
# Used as @tool
|
| 95 |
-
fn = dargs[0]
|
| 96 |
-
return fn
|
| 97 |
-
|
| 98 |
-
# Used as @tool(...)
|
| 99 |
-
def _noop_decorator(fn):
|
| 100 |
-
return fn
|
| 101 |
-
return _noop_decorator
|
| 102 |
-
# ---- end shim ----
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
import re, math, time
|
| 106 |
-
from typing import Dict, List, Tuple, Optional
|
| 107 |
-
|
| 108 |
-
app = FastMCP("emotion-server")
|
| 109 |
-
|
| 110 |
-
# ---------------------------
|
| 111 |
-
# Lexicons & heuristics
|
| 112 |
-
# ---------------------------
|
| 113 |
-
EMO_LEX = {
|
| 114 |
-
"happy": r"\b(happy|grateful|excited|joy(?:ful)?|delighted|content|optimistic|glad|thrilled|yay)\b",
|
| 115 |
-
"sad": r"\b(sad|down|depress(?:ed|ing)|cry(?:ing)?|lonely|upset|miserable|heartbroken)\b",
|
| 116 |
-
"angry": r"\b(angry|mad|furious|irritated|pissed|annoyed|resentful|rage|hate)\b",
|
| 117 |
-
"anxious": r"\b(worried|anxious|nervous|stressed|overwhelmed|scared|uneasy|tense|on edge)\b",
|
| 118 |
-
"tired": r"\b(tired|exhaust(?:ed|ing)|drained|burnt(?:\s*out)?|sleepy|fatigued|worn out)\b",
|
| 119 |
-
"love": r"\b(love|affection|caring|fond|admire|cherish|adore)\b",
|
| 120 |
-
"fear": r"\b(afraid|fear|terrified|panic(?:ky|ked)?|panicked|shaken|petrified)\b",
|
| 121 |
-
}
|
| 122 |
-
|
| 123 |
-
# Emojis contribute signals even without words
|
| 124 |
-
EMOJI_SIGNAL = {
|
| 125 |
-
"happy": ["😀","😄","😊","🙂","😁","🥳","✨"],
|
| 126 |
-
"sad": ["😢","😭","😞","😔","☹️"],
|
| 127 |
-
"angry": ["😠","😡","🤬","💢"],
|
| 128 |
-
"anxious":["😰","😱","😬","😟","😧"],
|
| 129 |
-
"tired": ["🥱","😪","😴"],
|
| 130 |
-
"love": ["❤️","💖","💕","😍","🤍","💗","💓","😘"],
|
| 131 |
-
"fear": ["🫣","😨","😱","👀"],
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
NEGATORS = r"\b(no|not|never|hardly|barely|scarcely|isn['’]t|aren['’]t|can['’]t|don['’]t|doesn['’]t|won['’]t|without)\b"
|
| 135 |
-
INTENSIFIERS = {
|
| 136 |
-
r"\b(very|really|super|so|extremely|incredibly|totally|absolutely)\b": 1.35,
|
| 137 |
-
r"\b(kinda|kind of|somewhat|slightly|a bit|a little)\b": 0.75,
|
| 138 |
-
}
|
| 139 |
-
SARCASM_CUES = [
|
| 140 |
-
r"\byeah right\b", r"\bsure\b", r"\".+\"", r"/s\b", r"\bokayyy+\b", r"\blol\b(?!\w)"
|
| 141 |
-
]
|
| 142 |
-
|
| 143 |
-
# Tone map by quadrant
|
| 144 |
-
# arousal high/low × valence pos/neg
|
| 145 |
-
def quad_tone(valence: float, arousal: float) -> str:
|
| 146 |
-
if arousal >= 0.6 and valence >= 0.1: return "excited"
|
| 147 |
-
if arousal >= 0.6 and valence < -0.1: return "concerned"
|
| 148 |
-
if arousal < 0.6 and valence < -0.1: return "gentle"
|
| 149 |
-
if arousal < 0.6 and valence >= 0.1: return "calm"
|
| 150 |
-
return "neutral"
|
| 151 |
-
|
| 152 |
-
# ---------------------------
|
| 153 |
-
# Utilities
|
| 154 |
-
# ---------------------------
|
| 155 |
-
_compiled = {k: re.compile(p, re.I) for k, p in EMO_LEX.items()}
|
| 156 |
-
_neg_pat = re.compile(NEGATORS, re.I)
|
| 157 |
-
_int_pats = [(re.compile(p, re.I), w) for p, w in INTENSIFIERS.items()]
|
| 158 |
-
_sarcasm = [re.compile(p, re.I) for p in SARCASM_CUES]
|
| 159 |
-
|
| 160 |
-
def _emoji_hits(text: str) -> Dict[str, int]:
|
| 161 |
-
hits = {k: 0 for k in EMO_LEX}
|
| 162 |
-
for emo, arr in EMOJI_SIGNAL.items():
|
| 163 |
-
for e in arr:
|
| 164 |
-
hits[emo] += text.count(e)
|
| 165 |
-
return hits
|
| 166 |
-
|
| 167 |
-
def _intensity_multiplier(text: str) -> float:
|
| 168 |
-
mult = 1.0
|
| 169 |
-
for pat, w in _int_pats:
|
| 170 |
-
if pat.search(text):
|
| 171 |
-
mult *= w
|
| 172 |
-
# Exclamation marks increase arousal a bit (cap effect)
|
| 173 |
-
bangs = min(text.count("!"), 5)
|
| 174 |
-
mult *= (1.0 + 0.04 * bangs)
|
| 175 |
-
# ALL CAPS word run nudges intensity
|
| 176 |
-
if re.search(r"\b[A-Z]{3,}\b", text):
|
| 177 |
-
mult *= 1.08
|
| 178 |
-
return max(0.5, min(1.8, mult))
|
| 179 |
-
|
| 180 |
-
def _negation_factor(text: str, span_start: int) -> float:
|
| 181 |
-
"""
|
| 182 |
-
Look 5 words (~40 chars) backwards for a negator.
|
| 183 |
-
If present, invert or dampen signal.
|
| 184 |
-
"""
|
| 185 |
-
window_start = max(0, span_start - 40)
|
| 186 |
-
window = text[window_start:span_start]
|
| 187 |
-
if _neg_pat.search(window):
|
| 188 |
-
return -0.7 # invert and dampen
|
| 189 |
-
return 1.0
|
| 190 |
-
|
| 191 |
-
def _sarcasm_penalty(text: str) -> float:
|
| 192 |
-
return 0.85 if any(p.search(text) for p in _sarcasm) else 1.0
|
| 193 |
-
|
| 194 |
-
def _softmax(d: Dict[str, float]) -> Dict[str, float]:
|
| 195 |
-
xs = list(d.values())
|
| 196 |
-
if not xs: return d
|
| 197 |
-
m = max(xs)
|
| 198 |
-
exps = [math.exp(x - m) for x in xs]
|
| 199 |
-
s = sum(exps) or 1.0
|
| 200 |
-
return {k: exps[i] / s for i, k in enumerate(d.keys())}
|
| 201 |
-
|
| 202 |
-
# ---------------------------
|
| 203 |
-
# Per-user calibration (in-memory)
|
| 204 |
-
# ---------------------------
|
| 205 |
-
CALIBRATION: Dict[str, Dict[str, float]] = {} # user_id -> {bias_emo: float, arousal_bias: float, valence_bias: float}
|
| 206 |
-
|
| 207 |
-
def _apply_calibration(user_id: Optional[str], emo_scores: Dict[str, float], valence: float, arousal: float):
|
| 208 |
-
if not user_id or user_id not in CALIBRATION:
|
| 209 |
-
return emo_scores, valence, arousal
|
| 210 |
-
calib = CALIBRATION[user_id]
|
| 211 |
-
# shift emotions
|
| 212 |
-
for k, bias in calib.items():
|
| 213 |
-
if k in emo_scores:
|
| 214 |
-
emo_scores[k] += bias * 0.2
|
| 215 |
-
# dedicated valence/arousal bias keys if present
|
| 216 |
-
valence += calib.get("valence_bias", 0.0) * 0.15
|
| 217 |
-
arousal += calib.get("arousal_bias", 0.0) * 0.15
|
| 218 |
-
return emo_scores, valence, arousal
|
| 219 |
-
|
| 220 |
-
# ---------------------------
|
| 221 |
-
# Core analysis
|
| 222 |
-
# ---------------------------
|
| 223 |
-
def _analyze(text: str, user_id: Optional[str] = None) -> dict:
|
| 224 |
-
t = text or ""
|
| 225 |
-
tl = t.lower()
|
| 226 |
-
|
| 227 |
-
# Base scores from lexicon hits
|
| 228 |
-
emo_scores: Dict[str, float] = {k: 0.0 for k in EMO_LEX}
|
| 229 |
-
spans: Dict[str, List[Tuple[int, int, str]]] = {k: [] for k in EMO_LEX}
|
| 230 |
-
|
| 231 |
-
for emo, pat in _compiled.items():
|
| 232 |
-
for m in pat.finditer(tl):
|
| 233 |
-
factor = _negation_factor(tl, m.start())
|
| 234 |
-
emo_scores[emo] += 1.0 * factor
|
| 235 |
-
spans[emo].append((m.start(), m.end(), tl[m.start():m.end()]))
|
| 236 |
-
|
| 237 |
-
# Emoji contributions
|
| 238 |
-
e_hits = _emoji_hits(t)
|
| 239 |
-
for emo, c in e_hits.items():
|
| 240 |
-
if c:
|
| 241 |
-
emo_scores[emo] += 0.6 * c
|
| 242 |
-
|
| 243 |
-
# Intensifiers / sarcasm / punctuation adjustments (global)
|
| 244 |
-
intensity = _intensity_multiplier(t)
|
| 245 |
-
sarcasm_mult = _sarcasm_penalty(t)
|
| 246 |
-
|
| 247 |
-
for emo in emo_scores:
|
| 248 |
-
emo_scores[emo] *= intensity * sarcasm_mult
|
| 249 |
-
|
| 250 |
-
# Map to valence/arousal
|
| 251 |
-
pos = emo_scores["happy"] + emo_scores["love"]
|
| 252 |
-
neg = emo_scores["sad"] + emo_scores["fear"] + 0.9 * emo_scores["angry"] + 0.6 * emo_scores["anxious"]
|
| 253 |
-
valence = max(-1.0, min(1.0, round((pos - neg) * 0.4, 3)))
|
| 254 |
-
|
| 255 |
-
base_arousal = 0.5
|
| 256 |
-
arousal = base_arousal \
|
| 257 |
-
+ 0.12 * (emo_scores["angry"] > 0) \
|
| 258 |
-
+ 0.08 * (emo_scores["anxious"] > 0) \
|
| 259 |
-
- 0.10 * (emo_scores["tired"] > 0) \
|
| 260 |
-
+ 0.02 * min(t.count("!"), 5)
|
| 261 |
-
|
| 262 |
-
arousal = max(0.0, min(1.0, round(arousal, 3)))
|
| 263 |
-
|
| 264 |
-
# Confidence: count signals + consistency
|
| 265 |
-
hits = sum(1 for v in emo_scores.values() if abs(v) > 0.01) + sum(e_hits.values())
|
| 266 |
-
consistency = 0.0
|
| 267 |
-
if hits:
|
| 268 |
-
top2 = sorted(emo_scores.items(), key=lambda kv: kv[1], reverse=True)[:2]
|
| 269 |
-
if len(top2) == 2 and top2[1][1] > 0:
|
| 270 |
-
ratio = top2[0][1] / (top2[1][1] + 1e-6)
|
| 271 |
-
consistency = max(0.0, min(1.0, (ratio - 1) / 3)) # >1 means some separation
|
| 272 |
-
elif len(top2) == 1:
|
| 273 |
-
consistency = 0.6
|
| 274 |
-
conf = max(0.0, min(1.0, 0.25 + 0.1 * hits + 0.5 * consistency))
|
| 275 |
-
# downweight very short texts
|
| 276 |
-
if len(t.strip()) < 6:
|
| 277 |
-
conf *= 0.6
|
| 278 |
-
|
| 279 |
-
# Normalize emotions to pseudo-probs (softmax over positive scores)
|
| 280 |
-
pos_scores = {k: max(0.0, v) for k, v in emo_scores.items()}
|
| 281 |
-
probs = _softmax(pos_scores)
|
| 282 |
-
|
| 283 |
-
# Apply per-user calibration
|
| 284 |
-
probs, valence, arousal = _apply_calibration(user_id, probs, valence, arousal)
|
| 285 |
-
|
| 286 |
-
# Tone
|
| 287 |
-
tone = quad_tone(valence, arousal)
|
| 288 |
-
|
| 289 |
-
# Explanations
|
| 290 |
-
reasons = []
|
| 291 |
-
if intensity > 1.0: reasons.append(f"intensifiers x{intensity:.2f}")
|
| 292 |
-
if sarcasm_mult < 1.0: reasons.append("sarcasm cues detected")
|
| 293 |
-
if any(_neg_pat.search(tl[max(0,s-40):s]) for emo, spans_ in spans.items() for (s,_,_) in spans_):
|
| 294 |
-
reasons.append("negation near emotion tokens")
|
| 295 |
-
if any(e_hits.values()): reasons.append("emoji signals")
|
| 296 |
-
|
| 297 |
-
labels_sorted = sorted(probs.items(), key=lambda kv: kv[1], reverse=True)
|
| 298 |
-
top_labels = [k for k, v in labels_sorted[:3] if v > 0.05] or ["neutral"]
|
| 299 |
-
|
| 300 |
-
return {
|
| 301 |
-
"labels": top_labels,
|
| 302 |
-
"scores": {k: round(v, 3) for k, v in probs.items()},
|
| 303 |
-
"valence": round(valence, 3),
|
| 304 |
-
"arousal": round(arousal, 3),
|
| 305 |
-
"tone": tone,
|
| 306 |
-
"confidence": round(conf, 3),
|
| 307 |
-
"reasons": reasons,
|
| 308 |
-
"spans": {k: spans[k] for k in top_labels if spans.get(k)},
|
| 309 |
-
"ts": time.time(),
|
| 310 |
-
"user_id": user_id,
|
| 311 |
-
}
|
| 312 |
-
|
| 313 |
-
# ---------------------------
|
| 314 |
-
# MCP tools
|
| 315 |
-
# ---------------------------
|
| 316 |
-
|
| 317 |
-
@app.tool()
|
| 318 |
-
def analyze(text: str, user_id: Optional[str] = None) -> dict:
|
| 319 |
-
"""
|
| 320 |
-
Analyze text for emotion.
|
| 321 |
-
Args:
|
| 322 |
-
text: user message
|
| 323 |
-
user_id: optional user key for calibration
|
| 324 |
-
Returns:
|
| 325 |
-
dict with labels, scores (per emotion), valence [-1..1], arousal [0..1],
|
| 326 |
-
tone (calm/neutral/excited/concerned/gentle), confidence, reasons, spans.
|
| 327 |
-
"""
|
| 328 |
-
return _analyze(text, user_id=user_id)
|
| 329 |
-
|
| 330 |
-
@app.tool()
|
| 331 |
-
def batch_analyze(messages: List[str], user_id: Optional[str] = None) -> List[dict]:
|
| 332 |
-
"""
|
| 333 |
-
Batch analyze a list of messages.
|
| 334 |
-
"""
|
| 335 |
-
return [_analyze(m or "", user_id=user_id) for m in messages]
|
| 336 |
-
|
| 337 |
-
@app.tool()
|
| 338 |
-
def calibrate(user_id: str, bias: Dict[str, float] = None, arousal_bias: float = 0.0, valence_bias: float = 0.0) -> dict:
|
| 339 |
-
"""
|
| 340 |
-
Adjust per-user calibration.
|
| 341 |
-
- bias: e.g. {"anxious": -0.1, "love": 0.1}
|
| 342 |
-
- arousal_bias/valence_bias: small nudges (-1..1) applied after scoring.
|
| 343 |
-
"""
|
| 344 |
-
if user_id not in CALIBRATION:
|
| 345 |
-
CALIBRATION[user_id] = {}
|
| 346 |
-
if bias:
|
| 347 |
-
for k, v in bias.items():
|
| 348 |
-
CALIBRATION[user_id][k] = float(v)
|
| 349 |
-
if arousal_bias:
|
| 350 |
-
CALIBRATION[user_id]["arousal_bias"] = float(arousal_bias)
|
| 351 |
-
if valence_bias:
|
| 352 |
-
CALIBRATION[user_id]["valence_bias"] = float(valence_bias)
|
| 353 |
-
return {"ok": True, "calibration": CALIBRATION[user_id]}
|
| 354 |
-
|
| 355 |
-
@app.tool()
|
| 356 |
-
def reset_calibration(user_id: str) -> dict:
|
| 357 |
-
"""Remove per-user calibration."""
|
| 358 |
-
CALIBRATION.pop(user_id, None)
|
| 359 |
-
return {"ok": True}
|
| 360 |
-
|
| 361 |
-
@app.tool()
|
| 362 |
-
def health() -> dict:
|
| 363 |
-
"""Simple health check for MCP status chips."""
|
| 364 |
-
return {"status": "ok", "version": "1.2.0", "time": time.time()}
|
| 365 |
-
|
| 366 |
-
@app.tool()
|
| 367 |
-
def version() -> dict:
|
| 368 |
-
"""Return server version & feature flags."""
|
| 369 |
-
return {
|
| 370 |
-
"name": "emotion-server",
|
| 371 |
-
"version": "1.2.0",
|
| 372 |
-
"features": ["negation", "intensifiers", "emoji", "sarcasm", "confidence", "batch", "calibration"],
|
| 373 |
-
"emotions": list(EMO_LEX.keys()),
|
| 374 |
-
}
|
| 375 |
-
|
| 376 |
-
if __name__ == "__main__":
|
| 377 |
-
app.run() # serves MCP over stdio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
servers/memory_server.py
CHANGED
|
@@ -1,47 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
# from fastmcp import FastMCP, tool
|
| 3 |
-
# import json, os, time
|
| 4 |
-
|
| 5 |
-
# app = FastMCP("memory-server")
|
| 6 |
-
# FILE = os.environ.get("GM_MEMORY_FILE", "memory.json")
|
| 7 |
-
|
| 8 |
-
# def _load():
|
| 9 |
-
# if os.path.exists(FILE):
|
| 10 |
-
# with open(FILE) as f: return json.load(f)
|
| 11 |
-
# return []
|
| 12 |
-
|
| 13 |
-
# def _save(history):
|
| 14 |
-
# with open(FILE, "w") as f: json.dump(history[-50:], f) # keep up to 50
|
| 15 |
-
|
| 16 |
-
# @tool
|
| 17 |
-
# def remember(text: str, meta: dict | None = None) -> dict:
|
| 18 |
-
# """
|
| 19 |
-
# Append an entry to memory.
|
| 20 |
-
# Args:
|
| 21 |
-
# text: str - content to store
|
| 22 |
-
# meta: dict - optional info like {"tone":"gentle","labels":["sad"]}
|
| 23 |
-
# Returns: {"ok": True, "size": <n>}
|
| 24 |
-
# """
|
| 25 |
-
# data = _load()
|
| 26 |
-
# data.append({"t": int(time.time()), "text": text, "meta": meta or {}})
|
| 27 |
-
# _save(data)
|
| 28 |
-
# return {"ok": True, "size": len(data)}
|
| 29 |
-
|
| 30 |
-
# @tool
|
| 31 |
-
# def recall(k: int = 3) -> dict:
|
| 32 |
-
# """
|
| 33 |
-
# Return last k entries from memory (most recent last).
|
| 34 |
-
# Args:
|
| 35 |
-
# k: int - how many items
|
| 36 |
-
# Returns: {"items":[...]}
|
| 37 |
-
# """
|
| 38 |
-
# data = _load()
|
| 39 |
-
# return {"items": data[-k:]}
|
| 40 |
-
|
| 41 |
-
# if __name__ == "__main__":
|
| 42 |
-
# app.run()
|
| 43 |
-
# servers/memory_server.py
|
| 44 |
-
# servers/memory_server.py
|
| 45 |
from __future__ import annotations
|
| 46 |
# ---- FastMCP import shim (works across versions) ----
|
| 47 |
# Ensures: FastMCP is imported and `@tool` is ALWAYS a callable decorator.
|
|
|
|
| 1 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from __future__ import annotations
|
| 3 |
# ---- FastMCP import shim (works across versions) ----
|
| 4 |
# Ensures: FastMCP is imported and `@tool` is ALWAYS a callable decorator.
|
servers/memory_server.py.bak
DELETED
|
@@ -1,570 +0,0 @@
|
|
| 1 |
-
# # servers/memory_server.py
|
| 2 |
-
# from fastmcp import FastMCP, tool
|
| 3 |
-
# import json, os, time
|
| 4 |
-
|
| 5 |
-
# app = FastMCP("memory-server")
|
| 6 |
-
# FILE = os.environ.get("GM_MEMORY_FILE", "memory.json")
|
| 7 |
-
|
| 8 |
-
# def _load():
|
| 9 |
-
# if os.path.exists(FILE):
|
| 10 |
-
# with open(FILE) as f: return json.load(f)
|
| 11 |
-
# return []
|
| 12 |
-
|
| 13 |
-
# def _save(history):
|
| 14 |
-
# with open(FILE, "w") as f: json.dump(history[-50:], f) # keep up to 50
|
| 15 |
-
|
| 16 |
-
# @tool
|
| 17 |
-
# def remember(text: str, meta: dict | None = None) -> dict:
|
| 18 |
-
# """
|
| 19 |
-
# Append an entry to memory.
|
| 20 |
-
# Args:
|
| 21 |
-
# text: str - content to store
|
| 22 |
-
# meta: dict - optional info like {"tone":"gentle","labels":["sad"]}
|
| 23 |
-
# Returns: {"ok": True, "size": <n>}
|
| 24 |
-
# """
|
| 25 |
-
# data = _load()
|
| 26 |
-
# data.append({"t": int(time.time()), "text": text, "meta": meta or {}})
|
| 27 |
-
# _save(data)
|
| 28 |
-
# return {"ok": True, "size": len(data)}
|
| 29 |
-
|
| 30 |
-
# @tool
|
| 31 |
-
# def recall(k: int = 3) -> dict:
|
| 32 |
-
# """
|
| 33 |
-
# Return last k entries from memory (most recent last).
|
| 34 |
-
# Args:
|
| 35 |
-
# k: int - how many items
|
| 36 |
-
# Returns: {"items":[...]}
|
| 37 |
-
# """
|
| 38 |
-
# data = _load()
|
| 39 |
-
# return {"items": data[-k:]}
|
| 40 |
-
|
| 41 |
-
# if __name__ == "__main__":
|
| 42 |
-
# app.run()
|
| 43 |
-
# servers/memory_server.py
|
| 44 |
-
# servers/memory_server.py
|
| 45 |
-
from __future__ import annotations
|
| 46 |
-
# ---- FastMCP import shim (works across versions) ----
|
| 47 |
-
# Ensures: FastMCP is imported and `@tool` is ALWAYS a callable decorator.
|
| 48 |
-
from typing import Callable, Any
|
| 49 |
-
|
| 50 |
-
try:
|
| 51 |
-
from fastmcp import FastMCP # present across versions
|
| 52 |
-
except Exception as e:
|
| 53 |
-
raise ImportError(f"FastMCP missing: {e}")
|
| 54 |
-
|
| 55 |
-
_tool_candidate: Any = None
|
| 56 |
-
# Try common locations
|
| 57 |
-
try:
|
| 58 |
-
from fastmcp import tool as _tool_candidate # newer API: function
|
| 59 |
-
except Exception:
|
| 60 |
-
try:
|
| 61 |
-
from fastmcp.tools import tool as _tool_candidate # older API: function
|
| 62 |
-
except Exception:
|
| 63 |
-
_tool_candidate = None
|
| 64 |
-
|
| 65 |
-
# If we somehow got a module instead of a function, try attribute
|
| 66 |
-
if _tool_candidate is not None and not callable(_tool_candidate):
|
| 67 |
-
try:
|
| 68 |
-
_tool_candidate = _tool_candidate.tool # some builds expose module.tools.tool
|
| 69 |
-
except Exception:
|
| 70 |
-
_tool_candidate = None
|
| 71 |
-
|
| 72 |
-
def tool(*dargs, **dkwargs):
|
| 73 |
-
"""
|
| 74 |
-
Wrapper that behaves correctly in both usages:
|
| 75 |
-
@tool
|
| 76 |
-
@tool(...)
|
| 77 |
-
If real decorator exists, delegate. Otherwise:
|
| 78 |
-
- If called as @tool (i.e., first arg is fn), return fn (no-op).
|
| 79 |
-
- If called as @tool(...), return a decorator that returns fn (no-op).
|
| 80 |
-
"""
|
| 81 |
-
if callable(_tool_candidate):
|
| 82 |
-
return _tool_candidate(*dargs, **dkwargs)
|
| 83 |
-
|
| 84 |
-
# No real decorator available — provide no-op behavior.
|
| 85 |
-
if dargs and callable(dargs[0]) and not dkwargs:
|
| 86 |
-
# Used as @tool
|
| 87 |
-
fn = dargs[0]
|
| 88 |
-
return fn
|
| 89 |
-
|
| 90 |
-
# Used as @tool(...)
|
| 91 |
-
def _noop_decorator(fn):
|
| 92 |
-
return fn
|
| 93 |
-
return _noop_decorator
|
| 94 |
-
# ---- end shim ----
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
import json, os, time, math, re
|
| 98 |
-
from typing import Dict, List, Optional, Any, Tuple
|
| 99 |
-
from collections import Counter
|
| 100 |
-
|
| 101 |
-
app = FastMCP("memory-server")
|
| 102 |
-
|
| 103 |
-
# ---------------------------
|
| 104 |
-
# Storage & limits
|
| 105 |
-
# ---------------------------
|
| 106 |
-
FILE = os.environ.get("GM_MEMORY_FILE", "memory.json")
|
| 107 |
-
STM_MAX = int(os.environ.get("GM_STM_MAX", "120"))
|
| 108 |
-
EP_MAX = int(os.environ.get("GM_EPISODES_MAX", "240"))
|
| 109 |
-
FACT_MAX= int(os.environ.get("GM_FACTS_MAX", "200"))
|
| 110 |
-
# ---------------------------
|
| 111 |
-
# Emotion Drift Analysis
|
| 112 |
-
# ---------------------------
|
| 113 |
-
def compute_emotional_direction(trajectory: List[Dict[str, Any]]) -> str:
|
| 114 |
-
"""
|
| 115 |
-
Analyze emotion trajectory to detect escalation/de-escalation/volatility/stability.
|
| 116 |
-
trajectory: list of {"label": str, "valence": float, "arousal": float, "ts": int}
|
| 117 |
-
"""
|
| 118 |
-
if len(trajectory) < 2:
|
| 119 |
-
return "stable"
|
| 120 |
-
|
| 121 |
-
# Get last 5 emotions for trend
|
| 122 |
-
recent = trajectory[-5:]
|
| 123 |
-
valences = [e.get("valence", 0.0) for e in recent]
|
| 124 |
-
arousals = [e.get("arousal", 0.5) for e in recent]
|
| 125 |
-
|
| 126 |
-
# Detect trend
|
| 127 |
-
valence_trend = valences[-1] - valences[0] # negative = more negative, positive = more positive
|
| 128 |
-
arousal_trend = arousals[-1] - arousals[0] # positive = escalating
|
| 129 |
-
|
| 130 |
-
# Classify
|
| 131 |
-
if arousal_trend > 0.15 and valence_trend < -0.1:
|
| 132 |
-
return "escalating" # Getting more activated and negative
|
| 133 |
-
elif arousal_trend < -0.15 and valence_trend > 0.1:
|
| 134 |
-
return "de-escalating" # Calming down and more positive
|
| 135 |
-
elif max(arousals) - min(arousals) > 0.3:
|
| 136 |
-
return "volatile" # Wide swings in arousal
|
| 137 |
-
else:
|
| 138 |
-
return "stable"
|
| 139 |
-
|
| 140 |
-
def get_emotion_trajectory(store: Dict[str, Any], k: int = 10) -> Tuple[List[Dict[str, Any]], str]:
|
| 141 |
-
"""
|
| 142 |
-
Returns last k emotion events from memory and the trajectory direction.
|
| 143 |
-
"""
|
| 144 |
-
stm = store.get("stm", [])
|
| 145 |
-
trajectory = []
|
| 146 |
-
|
| 147 |
-
for item in stm[-k:]:
|
| 148 |
-
event = item.get("event", {})
|
| 149 |
-
emotion = event.get("emotion", {})
|
| 150 |
-
if emotion and emotion.get("labels"):
|
| 151 |
-
trajectory.append({
|
| 152 |
-
"label": (emotion.get("labels") or ["neutral"])[0],
|
| 153 |
-
"valence": float(emotion.get("valence", 0.0)),
|
| 154 |
-
"arousal": float(emotion.get("arousal", 0.5)),
|
| 155 |
-
"ts": event.get("ts", int(time.time())),
|
| 156 |
-
"text": event.get("text", "")[:50] # First 50 chars
|
| 157 |
-
})
|
| 158 |
-
|
| 159 |
-
direction = compute_emotional_direction(trajectory)
|
| 160 |
-
return trajectory, direction
|
| 161 |
-
# ---------------------------
|
| 162 |
-
# File helpers & migrations
|
| 163 |
-
# ---------------------------
|
| 164 |
-
def _default_store() -> Dict[str, Any]:
|
| 165 |
-
return {"stm": [], "episodes": [], "facts": [], "meta": {"created": int(time.time()), "version": "1.3.0"}}
|
| 166 |
-
|
| 167 |
-
def _load() -> Dict[str, Any]:
|
| 168 |
-
if os.path.exists(FILE):
|
| 169 |
-
with open(FILE) as f:
|
| 170 |
-
try:
|
| 171 |
-
data = json.load(f)
|
| 172 |
-
# migrate flat list → tiered
|
| 173 |
-
if isinstance(data, list):
|
| 174 |
-
data = {"stm": data[-STM_MAX:], "episodes": [], "facts": [], "meta": {"created": int(time.time()), "version": "1.3.0"}}
|
| 175 |
-
# backfill ids in stm
|
| 176 |
-
changed = False
|
| 177 |
-
for i, it in enumerate(data.get("stm", [])):
|
| 178 |
-
if "id" not in it:
|
| 179 |
-
it["id"] = f"stm-{it.get('t', int(time.time()))}-{i}"
|
| 180 |
-
changed = True
|
| 181 |
-
if changed:
|
| 182 |
-
_save(data)
|
| 183 |
-
return data
|
| 184 |
-
except Exception:
|
| 185 |
-
return _default_store()
|
| 186 |
-
return _default_store()
|
| 187 |
-
|
| 188 |
-
def _save(store: Dict[str, Any]) -> None:
|
| 189 |
-
store["stm"] = store.get("stm", [])[-STM_MAX:]
|
| 190 |
-
store["episodes"] = store.get("episodes", [])[-EP_MAX:]
|
| 191 |
-
store["facts"] = store.get("facts", [])[-FACT_MAX:]
|
| 192 |
-
with open(FILE, "w") as f:
|
| 193 |
-
json.dump(store, f, ensure_ascii=False)
|
| 194 |
-
|
| 195 |
-
# ---------------------------
|
| 196 |
-
# Salience & decay (same as before)
|
| 197 |
-
# ---------------------------
|
| 198 |
-
def time_decay(ts: float, now: Optional[float] = None, half_life_hours: float = 72.0) -> float:
|
| 199 |
-
now = now or time.time()
|
| 200 |
-
dt_h = max(0.0, (now - ts) / 3600.0)
|
| 201 |
-
return 0.5 ** (dt_h / half_life_hours)
|
| 202 |
-
|
| 203 |
-
_WORD = re.compile(r"[a-zA-Z']+")
|
| 204 |
-
|
| 205 |
-
def keyword_set(text: str) -> set:
|
| 206 |
-
return set(w.lower() for w in _WORD.findall(text or "") if len(w) > 2)
|
| 207 |
-
|
| 208 |
-
def novelty_score(text: str, recent_texts: List[str], k: int = 10) -> float:
|
| 209 |
-
if not text:
|
| 210 |
-
return 0.0
|
| 211 |
-
A = keyword_set(text)
|
| 212 |
-
if not A:
|
| 213 |
-
return 0.0
|
| 214 |
-
recent = [keyword_set(t) for t in recent_texts[-k:] if t]
|
| 215 |
-
if not recent:
|
| 216 |
-
return 1.0
|
| 217 |
-
sims = []
|
| 218 |
-
for B in recent:
|
| 219 |
-
inter = len(A & B)
|
| 220 |
-
union = len(A | B) or 1
|
| 221 |
-
sims.append(inter / union)
|
| 222 |
-
sim = max(sims) if sims else 0.0
|
| 223 |
-
return max(0.0, 1.0 - sim)
|
| 224 |
-
|
| 225 |
-
def compute_salience(ev: Dict[str, Any], recent_texts: List[str]) -> float:
|
| 226 |
-
labels = ev.get("emotion", {}).get("labels") or []
|
| 227 |
-
conf = float(ev.get("emotion", {}).get("confidence") or 0.0)
|
| 228 |
-
valence= float(ev.get("emotion", {}).get("valence") or 0.0)
|
| 229 |
-
arousal= float(ev.get("emotion", {}).get("arousal") or 0.5)
|
| 230 |
-
sinc = float(ev.get("sincerity") or 0.0) / 100.0
|
| 231 |
-
text = ev.get("text", "")
|
| 232 |
-
|
| 233 |
-
affect = abs(valence) * (0.7 + 0.3 * arousal) * conf
|
| 234 |
-
nov = novelty_score(text, recent_texts)
|
| 235 |
-
user_flag = 1.0 if ev.get("user_pinned") else 0.0
|
| 236 |
-
boundary = 1.0 if ev.get("task_boundary") else 0.0
|
| 237 |
-
|
| 238 |
-
sal = 0.45 * affect + 0.25 * nov + 0.18 * user_flag + 0.12 * boundary + 0.10 * sinc
|
| 239 |
-
return round(max(0.0, min(1.0, sal)), 3)
|
| 240 |
-
|
| 241 |
-
# ---------------------------
|
| 242 |
-
# Episode & fact synthesis
|
| 243 |
-
# ---------------------------
|
| 244 |
-
def make_episode(ev: Dict[str, Any], salience: float) -> Dict[str, Any]:
|
| 245 |
-
emo = ev.get("emotion", {})
|
| 246 |
-
return {
|
| 247 |
-
"episode_id": ev.get("id") or f"ep-{int(time.time()*1000)}",
|
| 248 |
-
"ts_start": ev.get("ts") or int(time.time()),
|
| 249 |
-
"ts_end": ev.get("ts") or int(time.time()),
|
| 250 |
-
"summary": ev.get("summary") or (ev.get("text")[:140] if ev.get("text") else ""),
|
| 251 |
-
"topics": list(set(emo.get("labels") or [])) or ["misc"],
|
| 252 |
-
"emotion_peak": (emo.get("labels") or ["neutral"])[0],
|
| 253 |
-
"emotion_conf": float(emo.get("confidence") or 0.0),
|
| 254 |
-
"tone": emo.get("tone") or "neutral",
|
| 255 |
-
"salience": float(salience),
|
| 256 |
-
"provenance_event": ev.get("id"),
|
| 257 |
-
}
|
| 258 |
-
|
| 259 |
-
def cluster_topics(episodes: List[Dict[str, Any]]) -> Dict[str, List[Dict[str, Any]]]:
|
| 260 |
-
buckets: Dict[str, List[Dict[str, Any]]] = {}
|
| 261 |
-
for ep in episodes:
|
| 262 |
-
for t in ep.get("topics") or ["misc"]:
|
| 263 |
-
buckets.setdefault(t, []).append(ep)
|
| 264 |
-
return buckets
|
| 265 |
-
|
| 266 |
-
def synthesize_fact(topic: str, eps: List[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
|
| 267 |
-
if not eps:
|
| 268 |
-
return None
|
| 269 |
-
support = len(eps)
|
| 270 |
-
avg_sal = sum(e.get("salience", 0.0) for e in eps) / max(1, support)
|
| 271 |
-
avg_conf= sum(e.get("emotion_conf", 0.0) for e in eps) / max(1, support)
|
| 272 |
-
conf = max(0.0, min(1.0, 0.5 * avg_sal + 0.5 * avg_conf))
|
| 273 |
-
if support < 3 or conf < 0.6:
|
| 274 |
-
return None
|
| 275 |
-
tones = {}
|
| 276 |
-
for e in eps: tones[e.get("tone", "neutral")] = tones.get(e.get("tone", "neutral"), 0) + 1
|
| 277 |
-
top_tone = sorted(tones.items(), key=lambda kv: kv[1], reverse=True)[0][0]
|
| 278 |
-
return {
|
| 279 |
-
"fact_id": f"fact-{topic}-{int(time.time())}",
|
| 280 |
-
"proposition": f"Prefers {top_tone} tone for topic '{topic}'",
|
| 281 |
-
"support": support,
|
| 282 |
-
"confidence": round(conf, 2),
|
| 283 |
-
"last_updated": int(time.time()),
|
| 284 |
-
"topics": [topic],
|
| 285 |
-
"provenance_episode_ids": [e["episode_id"] for e in eps],
|
| 286 |
-
}
|
| 287 |
-
|
| 288 |
-
# ---------------------------
|
| 289 |
-
# ID helpers
|
| 290 |
-
# ---------------------------
|
| 291 |
-
def _ensure_stm_id(item: Dict[str, Any], idx: int) -> Dict[str, Any]:
|
| 292 |
-
if "id" not in item:
|
| 293 |
-
item["id"] = f"stm-{item.get('t', int(time.time()))}-{idx}"
|
| 294 |
-
return item
|
| 295 |
-
|
| 296 |
-
def _stm_text(item: Dict[str, Any]) -> str:
|
| 297 |
-
if "text" in item and isinstance(item["text"], str):
|
| 298 |
-
return item["text"]
|
| 299 |
-
return (item.get("event") or {}).get("text", "") or ""
|
| 300 |
-
|
| 301 |
-
def _collect_docs(store: Dict[str, Any], tier: Optional[str] = None) -> List[Tuple[str,str,str,int]]:
|
| 302 |
-
"""
|
| 303 |
-
Returns list of (id, tier, text, ts)
|
| 304 |
-
"""
|
| 305 |
-
docs: List[Tuple[str,str,str,int]] = []
|
| 306 |
-
if tier in (None, "stm"):
|
| 307 |
-
for i, it in enumerate(store.get("stm", [])):
|
| 308 |
-
it = _ensure_stm_id(it, i)
|
| 309 |
-
docs.append((it["id"], "stm", _stm_text(it), int(it.get("t", time.time()))))
|
| 310 |
-
if tier in (None, "episodes"):
|
| 311 |
-
for ep in store.get("episodes", []):
|
| 312 |
-
docs.append((ep.get("episode_id",""), "episodes", ep.get("summary",""), int(ep.get("ts_end", time.time()))))
|
| 313 |
-
if tier in (None, "facts"):
|
| 314 |
-
for f in store.get("facts", []):
|
| 315 |
-
docs.append((f.get("fact_id",""), "facts", f.get("proposition",""), int(f.get("last_updated", time.time()))))
|
| 316 |
-
return [d for d in docs if d[0] and d[2]]
|
| 317 |
-
|
| 318 |
-
# ---------------------------
|
| 319 |
-
# Simple TF-IDF search
|
| 320 |
-
# ---------------------------
|
| 321 |
-
def _tfidf_rank(query: str, docs: List[Tuple[str,str,str,int]], k: int = 5):
|
| 322 |
-
q_terms = [w for w in keyword_set(query)]
|
| 323 |
-
if not q_terms or not docs:
|
| 324 |
-
return []
|
| 325 |
-
# DF
|
| 326 |
-
df = Counter()
|
| 327 |
-
doc_terms = {}
|
| 328 |
-
for _id, _tier, text, _ts in docs:
|
| 329 |
-
terms = [w for w in keyword_set(text)]
|
| 330 |
-
doc_terms[_id] = terms
|
| 331 |
-
for t in set(terms):
|
| 332 |
-
df[t] += 1
|
| 333 |
-
N = len(docs)
|
| 334 |
-
idf = {t: math.log((N + 1) / (df[t] + 1)) + 1.0 for t in df}
|
| 335 |
-
# Score
|
| 336 |
-
scored = []
|
| 337 |
-
qset = set(q_terms)
|
| 338 |
-
for _id, _tier, text, _ts in docs:
|
| 339 |
-
terms = doc_terms[_id]
|
| 340 |
-
tf = Counter(terms)
|
| 341 |
-
score = 0.0
|
| 342 |
-
matched = []
|
| 343 |
-
for t in q_terms:
|
| 344 |
-
if tf[t] > 0:
|
| 345 |
-
score += tf[t] * idf.get(t, 1.0)
|
| 346 |
-
matched.append(t)
|
| 347 |
-
if score > 0:
|
| 348 |
-
scored.append((_id, _tier, text, _ts, score, matched))
|
| 349 |
-
scored.sort(key=lambda x: (-x[4], -x[3])) # score desc, then recent
|
| 350 |
-
return scored[:k]
|
| 351 |
-
|
| 352 |
-
# ---------------------------
|
| 353 |
-
# Tools (API)
|
| 354 |
-
# ---------------------------
|
| 355 |
-
|
| 356 |
-
@tool
|
| 357 |
-
def remember(text: str, meta: dict | None = None) -> dict:
|
| 358 |
-
store = _load()
|
| 359 |
-
item = {"t": int(time.time()), "text": text, "meta": meta or {}}
|
| 360 |
-
item["id"] = f"stm-{item['t']}-{len(store.get('stm', []))}"
|
| 361 |
-
store["stm"].append(item)
|
| 362 |
-
_save(store)
|
| 363 |
-
return {"ok": True, "stm_size": len(store["stm"]), "id": item["id"]}
|
| 364 |
-
|
| 365 |
-
@tool
|
| 366 |
-
def remember_event(event: dict, promote: bool = True) -> dict:
|
| 367 |
-
store = _load()
|
| 368 |
-
ev = dict(event or {})
|
| 369 |
-
ev.setdefault("ts", int(time.time()))
|
| 370 |
-
ev.setdefault("role", "user")
|
| 371 |
-
ev.setdefault("text", "")
|
| 372 |
-
if "salience" not in ev:
|
| 373 |
-
recent_texts = [it.get("text","") for it in store.get("stm", [])[-10:]]
|
| 374 |
-
ev["salience"] = compute_salience(ev, recent_texts)
|
| 375 |
-
stm_item = {
|
| 376 |
-
"id": f"stm-{ev['ts']}-{len(store.get('stm', []))}",
|
| 377 |
-
"t": ev["ts"],
|
| 378 |
-
"text": ev.get("text",""),
|
| 379 |
-
"event": ev
|
| 380 |
-
}
|
| 381 |
-
store["stm"].append(stm_item)
|
| 382 |
-
if promote:
|
| 383 |
-
aff_conf = float(ev.get("emotion", {}).get("confidence") or 0.0)
|
| 384 |
-
if ev["salience"] >= 0.45 or ev.get("user_pinned") or ev.get("task_boundary"):
|
| 385 |
-
ep = make_episode(ev, ev["salience"])
|
| 386 |
-
store["episodes"].append(ep)
|
| 387 |
-
_save(store)
|
| 388 |
-
return {"ok": True, "salience": ev["salience"], "id": stm_item["id"],
|
| 389 |
-
"sizes": {"stm": len(store["stm"]), "episodes": len(store["episodes"]), "facts": len(store["facts"])}}
|
| 390 |
-
|
| 391 |
-
@tool
|
| 392 |
-
def recall(k: int = 3) -> dict:
|
| 393 |
-
store = _load()
|
| 394 |
-
items = store.get("stm", [])[-k:]
|
| 395 |
-
return {"items": items}
|
| 396 |
-
|
| 397 |
-
@tool
|
| 398 |
-
def recall_episodes(k: int = 5, topic: str | None = None) -> dict:
|
| 399 |
-
store = _load()
|
| 400 |
-
eps = store.get("episodes", [])
|
| 401 |
-
if topic:
|
| 402 |
-
eps = [e for e in eps if topic in (e.get("topics") or [])]
|
| 403 |
-
return {"items": eps[-k:]}
|
| 404 |
-
|
| 405 |
-
@tool
|
| 406 |
-
def recall_facts() -> dict:
|
| 407 |
-
store = _load()
|
| 408 |
-
return {"facts": store.get("facts", [])}
|
| 409 |
-
|
| 410 |
-
@tool
|
| 411 |
-
def reflect() -> dict:
|
| 412 |
-
store = _load()
|
| 413 |
-
eps = store.get("episodes", [])
|
| 414 |
-
if not eps:
|
| 415 |
-
return {"ok": True, "updated": 0, "facts": store.get("facts", [])}
|
| 416 |
-
buckets = cluster_topics(eps)
|
| 417 |
-
new_facts = []
|
| 418 |
-
for topic, group in buckets.items():
|
| 419 |
-
fact = synthesize_fact(topic, group)
|
| 420 |
-
if fact:
|
| 421 |
-
existing = next((f for f in store["facts"] if f.get("proposition") == fact["proposition"]), None)
|
| 422 |
-
if existing:
|
| 423 |
-
existing["support"] = max(existing.get("support", 0), fact["support"])
|
| 424 |
-
existing["confidence"] = round(max(existing.get("confidence", 0.0), fact["confidence"]), 2)
|
| 425 |
-
existing["last_updated"] = int(time.time())
|
| 426 |
-
else:
|
| 427 |
-
new_facts.append(fact)
|
| 428 |
-
store["facts"].extend(new_facts)
|
| 429 |
-
_save(store)
|
| 430 |
-
return {"ok": True, "updated": len(new_facts), "facts": store["facts"]}
|
| 431 |
-
|
| 432 |
-
@tool
|
| 433 |
-
def prune(before_ts: int | None = None) -> dict:
|
| 434 |
-
store = _load()
|
| 435 |
-
stm = store.get("stm", [])
|
| 436 |
-
if before_ts:
|
| 437 |
-
stm = [it for it in stm if it.get("t", 0) >= int(before_ts)]
|
| 438 |
-
else:
|
| 439 |
-
cut = int(len(stm) * 0.75)
|
| 440 |
-
stm = stm[cut:]
|
| 441 |
-
store["stm"] = stm
|
| 442 |
-
_save(store)
|
| 443 |
-
return {"ok": True, "stm_size": len(store["stm"])}
|
| 444 |
-
|
| 445 |
-
# -------- NEW: search / get / delete / list --------
|
| 446 |
-
|
| 447 |
-
@tool
|
| 448 |
-
def search(query: str, tier: str | None = None, k: int = 5) -> dict:
|
| 449 |
-
"""
|
| 450 |
-
TF-IDF search across memory.
|
| 451 |
-
Args:
|
| 452 |
-
query: text to search
|
| 453 |
-
tier: one of {"stm","episodes","facts"} or None for all
|
| 454 |
-
k: number of results
|
| 455 |
-
Returns: {"results":[{"id","tier","text","ts","score","matched"}]}
|
| 456 |
-
"""
|
| 457 |
-
store = _load()
|
| 458 |
-
docs = _collect_docs(store, tier=tier)
|
| 459 |
-
ranked = _tfidf_rank(query, docs, k=k)
|
| 460 |
-
results = [{"id": _id, "tier": _tier, "text": text, "ts": ts, "score": round(score,3), "matched": matched}
|
| 461 |
-
for (_id, _tier, text, ts, score, matched) in ranked]
|
| 462 |
-
return {"results": results}
|
| 463 |
-
|
| 464 |
-
@tool
|
| 465 |
-
def get(item_id: str) -> dict:
|
| 466 |
-
"""
|
| 467 |
-
Fetch a single item by id from any tier.
|
| 468 |
-
"""
|
| 469 |
-
s = _load()
|
| 470 |
-
for it in s.get("stm", []):
|
| 471 |
-
if it.get("id") == item_id:
|
| 472 |
-
return {"tier": "stm", "item": it}
|
| 473 |
-
for ep in s.get("episodes", []):
|
| 474 |
-
if ep.get("episode_id") == item_id:
|
| 475 |
-
return {"tier": "episodes", "item": ep}
|
| 476 |
-
for f in s.get("facts", []):
|
| 477 |
-
if f.get("fact_id") == item_id:
|
| 478 |
-
return {"tier": "facts", "item": f}
|
| 479 |
-
return {"tier": None, "item": None}
|
| 480 |
-
|
| 481 |
-
@tool
|
| 482 |
-
def delete_by_id(item_id: str, tier: str | None = None) -> dict:
|
| 483 |
-
"""
|
| 484 |
-
Delete a single item by id. If tier is None, searches all tiers.
|
| 485 |
-
Returns {"ok": bool, "removed_from": <tier>|None}
|
| 486 |
-
"""
|
| 487 |
-
s = _load()
|
| 488 |
-
removed_from = None
|
| 489 |
-
if tier in (None, "stm"):
|
| 490 |
-
before = len(s["stm"])
|
| 491 |
-
s["stm"] = [it for it in s["stm"] if it.get("id") != item_id]
|
| 492 |
-
if len(s["stm"]) != before: removed_from = "stm"
|
| 493 |
-
if not removed_from and tier in (None, "episodes"):
|
| 494 |
-
before = len(s["episodes"])
|
| 495 |
-
s["episodes"] = [e for e in s["episodes"] if e.get("episode_id") != item_id]
|
| 496 |
-
if len(s["episodes"]) != before: removed_from = "episodes"
|
| 497 |
-
if not removed_from and tier in (None, "facts"):
|
| 498 |
-
before = len(s["facts"])
|
| 499 |
-
s["facts"] = [f for f in s["facts"] if f.get("fact_id") != item_id]
|
| 500 |
-
if len(s["facts"]) != before: removed_from = "facts"
|
| 501 |
-
if removed_from:
|
| 502 |
-
_save(s)
|
| 503 |
-
return {"ok": True, "removed_from": removed_from}
|
| 504 |
-
return {"ok": False, "removed_from": None}
|
| 505 |
-
|
| 506 |
-
@tool
|
| 507 |
-
def list_items(tier: str, k: int = 10) -> dict:
|
| 508 |
-
"""
|
| 509 |
-
List last k items in a tier.
|
| 510 |
-
tier ∈ {"stm","episodes","facts"}
|
| 511 |
-
"""
|
| 512 |
-
s = _load()
|
| 513 |
-
if tier == "stm":
|
| 514 |
-
return {"items": s.get("stm", [])[-k:]}
|
| 515 |
-
if tier == "episodes":
|
| 516 |
-
return {"items": s.get("episodes", [])[-k:]}
|
| 517 |
-
if tier == "facts":
|
| 518 |
-
return {"items": s.get("facts", [])[-k:]}
|
| 519 |
-
return {"items": []}
|
| 520 |
-
|
| 521 |
-
# -------- Diagnostics --------
|
| 522 |
-
|
| 523 |
-
@tool
|
| 524 |
-
def stats() -> dict:
|
| 525 |
-
s = _load()
|
| 526 |
-
return {
|
| 527 |
-
"stm": len(s.get("stm", [])),
|
| 528 |
-
"episodes": len(s.get("episodes", [])),
|
| 529 |
-
"facts": len(s.get("facts", [])),
|
| 530 |
-
"file": FILE,
|
| 531 |
-
"created": s.get("meta", {}).get("created"),
|
| 532 |
-
"version": s.get("meta", {}).get("version", "1.3.0"),
|
| 533 |
-
}
|
| 534 |
-
|
| 535 |
-
@tool
|
| 536 |
-
def health() -> dict:
|
| 537 |
-
try:
|
| 538 |
-
s = _load()
|
| 539 |
-
return {"status": "ok", "stm": len(s.get("stm", [])), "episodes": len(s.get("episodes", [])), "facts": len(s.get("facts", [])), "time": time.time(), "version": "1.3.0"}
|
| 540 |
-
except Exception as e:
|
| 541 |
-
return {"status": "error", "error": str(e), "time": time.time()}
|
| 542 |
-
|
| 543 |
-
@tool
|
| 544 |
-
def version() -> dict:
|
| 545 |
-
return {"name": "memory-server", "version": "1.3.0", "tiers": ["stm","episodes","facts"], "file": FILE}
|
| 546 |
-
|
| 547 |
-
@tool
|
| 548 |
-
def get_emotion_arc(k: int = 10) -> dict:
|
| 549 |
-
"""
|
| 550 |
-
Get the emotion trajectory (arc) for the last k events.
|
| 551 |
-
Returns: {"trajectory": [...], "direction": "escalating|de-escalating|volatile|stable", "summary": str}
|
| 552 |
-
"""
|
| 553 |
-
store = _load()
|
| 554 |
-
trajectory, direction = get_emotion_trajectory(store, k=k)
|
| 555 |
-
|
| 556 |
-
if not trajectory:
|
| 557 |
-
return {"trajectory": [], "direction": "unknown", "summary": "No emotion history"}
|
| 558 |
-
|
| 559 |
-
# Create readable summary
|
| 560 |
-
emotions = [t["label"] for t in trajectory]
|
| 561 |
-
summary = " → ".join(emotions[-5:]) if len(emotions) >= 5 else " → ".join(emotions)
|
| 562 |
-
|
| 563 |
-
return {
|
| 564 |
-
"trajectory": trajectory,
|
| 565 |
-
"direction": direction,
|
| 566 |
-
"summary": summary
|
| 567 |
-
}
|
| 568 |
-
|
| 569 |
-
if __name__ == "__main__":
|
| 570 |
-
app.run() # serves MCP over stdio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/servers/emotion_server.py.bak
DELETED
|
@@ -1,377 +0,0 @@
|
|
| 1 |
-
# # servers/emotion_server.py
|
| 2 |
-
# from fastmcp import FastMCP, tool
|
| 3 |
-
# import re
|
| 4 |
-
|
| 5 |
-
# app = FastMCP("emotion-server")
|
| 6 |
-
|
| 7 |
-
# _PATTERNS = {
|
| 8 |
-
# "happy": r"\b(happy|grateful|excited|joy|delighted|content|optimistic)\b",
|
| 9 |
-
# "sad": r"\b(sad|down|depressed|cry|lonely|upset|miserable)\b",
|
| 10 |
-
# "angry": r"\b(angry|mad|furious|irritated|pissed|annoyed|resentful)\b",
|
| 11 |
-
# "anxious": r"\b(worried|anxious|nervous|stressed|overwhelmed|scared)\b",
|
| 12 |
-
# "tired": r"\b(tired|exhausted|drained|burnt|sleepy|fatigued)\b",
|
| 13 |
-
# "love": r"\b(love|affection|caring|fond|admire|cherish)\b",
|
| 14 |
-
# "fear": r"\b(afraid|fear|terrified|panicked|shaken)\b",
|
| 15 |
-
# }
|
| 16 |
-
|
| 17 |
-
# _TONES = {"happy":"light","love":"light","sad":"gentle","fear":"gentle",
|
| 18 |
-
# "angry":"calming","anxious":"calming","tired":"gentle"}
|
| 19 |
-
|
| 20 |
-
# def _analyze(text: str) -> dict:
|
| 21 |
-
# t = text.lower()
|
| 22 |
-
# found = [k for k,pat in _PATTERNS.items() if re.search(pat, t)]
|
| 23 |
-
# valence = 0.0
|
| 24 |
-
# if "happy" in found or "love" in found: valence += 0.6
|
| 25 |
-
# if "sad" in found or "fear" in found: valence -= 0.6
|
| 26 |
-
# if "angry" in found: valence -= 0.4
|
| 27 |
-
# if "anxious" in found: valence -= 0.3
|
| 28 |
-
# if "tired" in found: valence -= 0.2
|
| 29 |
-
# arousal = 0.5 + (0.3 if ("angry" in found or "anxious" in found) else 0) - (0.2 if "tired" in found else 0)
|
| 30 |
-
# tone = "neutral"
|
| 31 |
-
# for e in found:
|
| 32 |
-
# if e in _TONES: tone = _TONES[e]; break
|
| 33 |
-
# return {
|
| 34 |
-
# "labels": found or ["neutral"],
|
| 35 |
-
# "valence": max(-1, min(1, round(valence, 2))),
|
| 36 |
-
# "arousal": max(0, min(1, round(arousal, 2))),
|
| 37 |
-
# "tone": tone,
|
| 38 |
-
# }
|
| 39 |
-
|
| 40 |
-
# @tool
|
| 41 |
-
# def analyze(text: str) -> dict:
|
| 42 |
-
# """
|
| 43 |
-
# Analyze user text for emotion.
|
| 44 |
-
# Args:
|
| 45 |
-
# text: str - user message
|
| 46 |
-
# Returns: dict {labels, valence, arousal, tone}
|
| 47 |
-
# """
|
| 48 |
-
# return _analyze(text)
|
| 49 |
-
|
| 50 |
-
# if __name__ == "__main__":
|
| 51 |
-
# app.run() # serves MCP over stdio
|
| 52 |
-
# servers/emotion_server.py
|
| 53 |
-
from __future__ import annotations
|
| 54 |
-
# ---- FastMCP import shim (works across versions) ----
|
| 55 |
-
# Ensures: FastMCP is imported and `@tool` is ALWAYS a callable decorator.
|
| 56 |
-
from typing import Callable, Any
|
| 57 |
-
|
| 58 |
-
try:
|
| 59 |
-
from fastmcp import FastMCP # present across versions
|
| 60 |
-
except Exception as e:
|
| 61 |
-
raise ImportError(f"FastMCP missing: {e}")
|
| 62 |
-
|
| 63 |
-
_tool_candidate: Any = None
|
| 64 |
-
# Try common locations
|
| 65 |
-
try:
|
| 66 |
-
from fastmcp import tool as _tool_candidate # newer API: function
|
| 67 |
-
except Exception:
|
| 68 |
-
try:
|
| 69 |
-
from fastmcp.tools import tool as _tool_candidate # older API: function
|
| 70 |
-
except Exception:
|
| 71 |
-
_tool_candidate = None
|
| 72 |
-
|
| 73 |
-
# If we somehow got a module instead of a function, try attribute
|
| 74 |
-
if _tool_candidate is not None and not callable(_tool_candidate):
|
| 75 |
-
try:
|
| 76 |
-
_tool_candidate = _tool_candidate.tool # some builds expose module.tools.tool
|
| 77 |
-
except Exception:
|
| 78 |
-
_tool_candidate = None
|
| 79 |
-
|
| 80 |
-
def tool(*dargs, **dkwargs):
|
| 81 |
-
"""
|
| 82 |
-
Wrapper that behaves correctly in both usages:
|
| 83 |
-
@tool
|
| 84 |
-
@tool(...)
|
| 85 |
-
If real decorator exists, delegate. Otherwise:
|
| 86 |
-
- If called as @tool (i.e., first arg is fn), return fn (no-op).
|
| 87 |
-
- If called as @tool(...), return a decorator that returns fn (no-op).
|
| 88 |
-
"""
|
| 89 |
-
if callable(_tool_candidate):
|
| 90 |
-
return _tool_candidate(*dargs, **dkwargs)
|
| 91 |
-
|
| 92 |
-
# No real decorator available — provide no-op behavior.
|
| 93 |
-
if dargs and callable(dargs[0]) and not dkwargs:
|
| 94 |
-
# Used as @tool
|
| 95 |
-
fn = dargs[0]
|
| 96 |
-
return fn
|
| 97 |
-
|
| 98 |
-
# Used as @tool(...)
|
| 99 |
-
def _noop_decorator(fn):
|
| 100 |
-
return fn
|
| 101 |
-
return _noop_decorator
|
| 102 |
-
# ---- end shim ----
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
import re, math, time
|
| 106 |
-
from typing import Dict, List, Tuple, Optional
|
| 107 |
-
|
| 108 |
-
app = FastMCP("emotion-server")
|
| 109 |
-
|
| 110 |
-
# ---------------------------
|
| 111 |
-
# Lexicons & heuristics
|
| 112 |
-
# ---------------------------
|
| 113 |
-
EMO_LEX = {
|
| 114 |
-
"happy": r"\b(happy|grateful|excited|joy(?:ful)?|delighted|content|optimistic|glad|thrilled|yay)\b",
|
| 115 |
-
"sad": r"\b(sad|down|depress(?:ed|ing)|cry(?:ing)?|lonely|upset|miserable|heartbroken)\b",
|
| 116 |
-
"angry": r"\b(angry|mad|furious|irritated|pissed|annoyed|resentful|rage|hate)\b",
|
| 117 |
-
"anxious": r"\b(worried|anxious|nervous|stressed|overwhelmed|scared|uneasy|tense|on edge)\b",
|
| 118 |
-
"tired": r"\b(tired|exhaust(?:ed|ing)|drained|burnt(?:\s*out)?|sleepy|fatigued|worn out)\b",
|
| 119 |
-
"love": r"\b(love|affection|caring|fond|admire|cherish|adore)\b",
|
| 120 |
-
"fear": r"\b(afraid|fear|terrified|panic(?:ky|ked)?|panicked|shaken|petrified)\b",
|
| 121 |
-
}
|
| 122 |
-
|
| 123 |
-
# Emojis contribute signals even without words
|
| 124 |
-
EMOJI_SIGNAL = {
|
| 125 |
-
"happy": ["😀","😄","😊","🙂","😁","🥳","✨"],
|
| 126 |
-
"sad": ["😢","😭","😞","😔","☹️"],
|
| 127 |
-
"angry": ["😠","😡","🤬","💢"],
|
| 128 |
-
"anxious":["😰","😱","😬","😟","😧"],
|
| 129 |
-
"tired": ["🥱","😪","😴"],
|
| 130 |
-
"love": ["❤️","💖","💕","😍","🤍","💗","💓","😘"],
|
| 131 |
-
"fear": ["🫣","😨","😱","👀"],
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
NEGATORS = r"\b(no|not|never|hardly|barely|scarcely|isn['’]t|aren['’]t|can['’]t|don['’]t|doesn['’]t|won['’]t|without)\b"
|
| 135 |
-
INTENSIFIERS = {
|
| 136 |
-
r"\b(very|really|super|so|extremely|incredibly|totally|absolutely)\b": 1.35,
|
| 137 |
-
r"\b(kinda|kind of|somewhat|slightly|a bit|a little)\b": 0.75,
|
| 138 |
-
}
|
| 139 |
-
SARCASM_CUES = [
|
| 140 |
-
r"\byeah right\b", r"\bsure\b", r"\".+\"", r"/s\b", r"\bokayyy+\b", r"\blol\b(?!\w)"
|
| 141 |
-
]
|
| 142 |
-
|
| 143 |
-
# Tone map by quadrant
|
| 144 |
-
# arousal high/low × valence pos/neg
|
| 145 |
-
def quad_tone(valence: float, arousal: float) -> str:
|
| 146 |
-
if arousal >= 0.6 and valence >= 0.1: return "excited"
|
| 147 |
-
if arousal >= 0.6 and valence < -0.1: return "concerned"
|
| 148 |
-
if arousal < 0.6 and valence < -0.1: return "gentle"
|
| 149 |
-
if arousal < 0.6 and valence >= 0.1: return "calm"
|
| 150 |
-
return "neutral"
|
| 151 |
-
|
| 152 |
-
# ---------------------------
|
| 153 |
-
# Utilities
|
| 154 |
-
# ---------------------------
|
| 155 |
-
_compiled = {k: re.compile(p, re.I) for k, p in EMO_LEX.items()}
|
| 156 |
-
_neg_pat = re.compile(NEGATORS, re.I)
|
| 157 |
-
_int_pats = [(re.compile(p, re.I), w) for p, w in INTENSIFIERS.items()]
|
| 158 |
-
_sarcasm = [re.compile(p, re.I) for p in SARCASM_CUES]
|
| 159 |
-
|
| 160 |
-
def _emoji_hits(text: str) -> Dict[str, int]:
|
| 161 |
-
hits = {k: 0 for k in EMO_LEX}
|
| 162 |
-
for emo, arr in EMOJI_SIGNAL.items():
|
| 163 |
-
for e in arr:
|
| 164 |
-
hits[emo] += text.count(e)
|
| 165 |
-
return hits
|
| 166 |
-
|
| 167 |
-
def _intensity_multiplier(text: str) -> float:
|
| 168 |
-
mult = 1.0
|
| 169 |
-
for pat, w in _int_pats:
|
| 170 |
-
if pat.search(text):
|
| 171 |
-
mult *= w
|
| 172 |
-
# Exclamation marks increase arousal a bit (cap effect)
|
| 173 |
-
bangs = min(text.count("!"), 5)
|
| 174 |
-
mult *= (1.0 + 0.04 * bangs)
|
| 175 |
-
# ALL CAPS word run nudges intensity
|
| 176 |
-
if re.search(r"\b[A-Z]{3,}\b", text):
|
| 177 |
-
mult *= 1.08
|
| 178 |
-
return max(0.5, min(1.8, mult))
|
| 179 |
-
|
| 180 |
-
def _negation_factor(text: str, span_start: int) -> float:
|
| 181 |
-
"""
|
| 182 |
-
Look 5 words (~40 chars) backwards for a negator.
|
| 183 |
-
If present, invert or dampen signal.
|
| 184 |
-
"""
|
| 185 |
-
window_start = max(0, span_start - 40)
|
| 186 |
-
window = text[window_start:span_start]
|
| 187 |
-
if _neg_pat.search(window):
|
| 188 |
-
return -0.7 # invert and dampen
|
| 189 |
-
return 1.0
|
| 190 |
-
|
| 191 |
-
def _sarcasm_penalty(text: str) -> float:
|
| 192 |
-
return 0.85 if any(p.search(text) for p in _sarcasm) else 1.0
|
| 193 |
-
|
| 194 |
-
def _softmax(d: Dict[str, float]) -> Dict[str, float]:
|
| 195 |
-
xs = list(d.values())
|
| 196 |
-
if not xs: return d
|
| 197 |
-
m = max(xs)
|
| 198 |
-
exps = [math.exp(x - m) for x in xs]
|
| 199 |
-
s = sum(exps) or 1.0
|
| 200 |
-
return {k: exps[i] / s for i, k in enumerate(d.keys())}
|
| 201 |
-
|
| 202 |
-
# ---------------------------
|
| 203 |
-
# Per-user calibration (in-memory)
|
| 204 |
-
# ---------------------------
|
| 205 |
-
CALIBRATION: Dict[str, Dict[str, float]] = {} # user_id -> {bias_emo: float, arousal_bias: float, valence_bias: float}
|
| 206 |
-
|
| 207 |
-
def _apply_calibration(user_id: Optional[str], emo_scores: Dict[str, float], valence: float, arousal: float):
|
| 208 |
-
if not user_id or user_id not in CALIBRATION:
|
| 209 |
-
return emo_scores, valence, arousal
|
| 210 |
-
calib = CALIBRATION[user_id]
|
| 211 |
-
# shift emotions
|
| 212 |
-
for k, bias in calib.items():
|
| 213 |
-
if k in emo_scores:
|
| 214 |
-
emo_scores[k] += bias * 0.2
|
| 215 |
-
# dedicated valence/arousal bias keys if present
|
| 216 |
-
valence += calib.get("valence_bias", 0.0) * 0.15
|
| 217 |
-
arousal += calib.get("arousal_bias", 0.0) * 0.15
|
| 218 |
-
return emo_scores, valence, arousal
|
| 219 |
-
|
| 220 |
-
# ---------------------------
|
| 221 |
-
# Core analysis
|
| 222 |
-
# ---------------------------
|
| 223 |
-
def _analyze(text: str, user_id: Optional[str] = None) -> dict:
|
| 224 |
-
t = text or ""
|
| 225 |
-
tl = t.lower()
|
| 226 |
-
|
| 227 |
-
# Base scores from lexicon hits
|
| 228 |
-
emo_scores: Dict[str, float] = {k: 0.0 for k in EMO_LEX}
|
| 229 |
-
spans: Dict[str, List[Tuple[int, int, str]]] = {k: [] for k in EMO_LEX}
|
| 230 |
-
|
| 231 |
-
for emo, pat in _compiled.items():
|
| 232 |
-
for m in pat.finditer(tl):
|
| 233 |
-
factor = _negation_factor(tl, m.start())
|
| 234 |
-
emo_scores[emo] += 1.0 * factor
|
| 235 |
-
spans[emo].append((m.start(), m.end(), tl[m.start():m.end()]))
|
| 236 |
-
|
| 237 |
-
# Emoji contributions
|
| 238 |
-
e_hits = _emoji_hits(t)
|
| 239 |
-
for emo, c in e_hits.items():
|
| 240 |
-
if c:
|
| 241 |
-
emo_scores[emo] += 0.6 * c
|
| 242 |
-
|
| 243 |
-
# Intensifiers / sarcasm / punctuation adjustments (global)
|
| 244 |
-
intensity = _intensity_multiplier(t)
|
| 245 |
-
sarcasm_mult = _sarcasm_penalty(t)
|
| 246 |
-
|
| 247 |
-
for emo in emo_scores:
|
| 248 |
-
emo_scores[emo] *= intensity * sarcasm_mult
|
| 249 |
-
|
| 250 |
-
# Map to valence/arousal
|
| 251 |
-
pos = emo_scores["happy"] + emo_scores["love"]
|
| 252 |
-
neg = emo_scores["sad"] + emo_scores["fear"] + 0.9 * emo_scores["angry"] + 0.6 * emo_scores["anxious"]
|
| 253 |
-
valence = max(-1.0, min(1.0, round((pos - neg) * 0.4, 3)))
|
| 254 |
-
|
| 255 |
-
base_arousal = 0.5
|
| 256 |
-
arousal = base_arousal \
|
| 257 |
-
+ 0.12 * (emo_scores["angry"] > 0) \
|
| 258 |
-
+ 0.08 * (emo_scores["anxious"] > 0) \
|
| 259 |
-
- 0.10 * (emo_scores["tired"] > 0) \
|
| 260 |
-
+ 0.02 * min(t.count("!"), 5)
|
| 261 |
-
|
| 262 |
-
arousal = max(0.0, min(1.0, round(arousal, 3)))
|
| 263 |
-
|
| 264 |
-
# Confidence: count signals + consistency
|
| 265 |
-
hits = sum(1 for v in emo_scores.values() if abs(v) > 0.01) + sum(e_hits.values())
|
| 266 |
-
consistency = 0.0
|
| 267 |
-
if hits:
|
| 268 |
-
top2 = sorted(emo_scores.items(), key=lambda kv: kv[1], reverse=True)[:2]
|
| 269 |
-
if len(top2) == 2 and top2[1][1] > 0:
|
| 270 |
-
ratio = top2[0][1] / (top2[1][1] + 1e-6)
|
| 271 |
-
consistency = max(0.0, min(1.0, (ratio - 1) / 3)) # >1 means some separation
|
| 272 |
-
elif len(top2) == 1:
|
| 273 |
-
consistency = 0.6
|
| 274 |
-
conf = max(0.0, min(1.0, 0.25 + 0.1 * hits + 0.5 * consistency))
|
| 275 |
-
# downweight very short texts
|
| 276 |
-
if len(t.strip()) < 6:
|
| 277 |
-
conf *= 0.6
|
| 278 |
-
|
| 279 |
-
# Normalize emotions to pseudo-probs (softmax over positive scores)
|
| 280 |
-
pos_scores = {k: max(0.0, v) for k, v in emo_scores.items()}
|
| 281 |
-
probs = _softmax(pos_scores)
|
| 282 |
-
|
| 283 |
-
# Apply per-user calibration
|
| 284 |
-
probs, valence, arousal = _apply_calibration(user_id, probs, valence, arousal)
|
| 285 |
-
|
| 286 |
-
# Tone
|
| 287 |
-
tone = quad_tone(valence, arousal)
|
| 288 |
-
|
| 289 |
-
# Explanations
|
| 290 |
-
reasons = []
|
| 291 |
-
if intensity > 1.0: reasons.append(f"intensifiers x{intensity:.2f}")
|
| 292 |
-
if sarcasm_mult < 1.0: reasons.append("sarcasm cues detected")
|
| 293 |
-
if any(_neg_pat.search(tl[max(0,s-40):s]) for emo, spans_ in spans.items() for (s,_,_) in spans_):
|
| 294 |
-
reasons.append("negation near emotion tokens")
|
| 295 |
-
if any(e_hits.values()): reasons.append("emoji signals")
|
| 296 |
-
|
| 297 |
-
labels_sorted = sorted(probs.items(), key=lambda kv: kv[1], reverse=True)
|
| 298 |
-
top_labels = [k for k, v in labels_sorted[:3] if v > 0.05] or ["neutral"]
|
| 299 |
-
|
| 300 |
-
return {
|
| 301 |
-
"labels": top_labels,
|
| 302 |
-
"scores": {k: round(v, 3) for k, v in probs.items()},
|
| 303 |
-
"valence": round(valence, 3),
|
| 304 |
-
"arousal": round(arousal, 3),
|
| 305 |
-
"tone": tone,
|
| 306 |
-
"confidence": round(conf, 3),
|
| 307 |
-
"reasons": reasons,
|
| 308 |
-
"spans": {k: spans[k] for k in top_labels if spans.get(k)},
|
| 309 |
-
"ts": time.time(),
|
| 310 |
-
"user_id": user_id,
|
| 311 |
-
}
|
| 312 |
-
|
| 313 |
-
# ---------------------------
|
| 314 |
-
# MCP tools
|
| 315 |
-
# ---------------------------
|
| 316 |
-
|
| 317 |
-
@app.tool()
|
| 318 |
-
def analyze(text: str, user_id: Optional[str] = None) -> dict:
|
| 319 |
-
"""
|
| 320 |
-
Analyze text for emotion.
|
| 321 |
-
Args:
|
| 322 |
-
text: user message
|
| 323 |
-
user_id: optional user key for calibration
|
| 324 |
-
Returns:
|
| 325 |
-
dict with labels, scores (per emotion), valence [-1..1], arousal [0..1],
|
| 326 |
-
tone (calm/neutral/excited/concerned/gentle), confidence, reasons, spans.
|
| 327 |
-
"""
|
| 328 |
-
return _analyze(text, user_id=user_id)
|
| 329 |
-
|
| 330 |
-
@app.tool()
|
| 331 |
-
def batch_analyze(messages: List[str], user_id: Optional[str] = None) -> List[dict]:
|
| 332 |
-
"""
|
| 333 |
-
Batch analyze a list of messages.
|
| 334 |
-
"""
|
| 335 |
-
return [_analyze(m or "", user_id=user_id) for m in messages]
|
| 336 |
-
|
| 337 |
-
@app.tool()
|
| 338 |
-
def calibrate(user_id: str, bias: Dict[str, float] = None, arousal_bias: float = 0.0, valence_bias: float = 0.0) -> dict:
|
| 339 |
-
"""
|
| 340 |
-
Adjust per-user calibration.
|
| 341 |
-
- bias: e.g. {"anxious": -0.1, "love": 0.1}
|
| 342 |
-
- arousal_bias/valence_bias: small nudges (-1..1) applied after scoring.
|
| 343 |
-
"""
|
| 344 |
-
if user_id not in CALIBRATION:
|
| 345 |
-
CALIBRATION[user_id] = {}
|
| 346 |
-
if bias:
|
| 347 |
-
for k, v in bias.items():
|
| 348 |
-
CALIBRATION[user_id][k] = float(v)
|
| 349 |
-
if arousal_bias:
|
| 350 |
-
CALIBRATION[user_id]["arousal_bias"] = float(arousal_bias)
|
| 351 |
-
if valence_bias:
|
| 352 |
-
CALIBRATION[user_id]["valence_bias"] = float(valence_bias)
|
| 353 |
-
return {"ok": True, "calibration": CALIBRATION[user_id]}
|
| 354 |
-
|
| 355 |
-
@app.tool()
|
| 356 |
-
def reset_calibration(user_id: str) -> dict:
|
| 357 |
-
"""Remove per-user calibration."""
|
| 358 |
-
CALIBRATION.pop(user_id, None)
|
| 359 |
-
return {"ok": True}
|
| 360 |
-
|
| 361 |
-
@app.tool()
|
| 362 |
-
def health() -> dict:
|
| 363 |
-
"""Simple health check for MCP status chips."""
|
| 364 |
-
return {"status": "ok", "version": "1.2.0", "time": time.time()}
|
| 365 |
-
|
| 366 |
-
@app.tool()
|
| 367 |
-
def version() -> dict:
|
| 368 |
-
"""Return server version & feature flags."""
|
| 369 |
-
return {
|
| 370 |
-
"name": "emotion-server",
|
| 371 |
-
"version": "1.2.0",
|
| 372 |
-
"features": ["negation", "intensifiers", "emoji", "sarcasm", "confidence", "batch", "calibration"],
|
| 373 |
-
"emotions": list(EMO_LEX.keys()),
|
| 374 |
-
}
|
| 375 |
-
|
| 376 |
-
if __name__ == "__main__":
|
| 377 |
-
app.run() # serves MCP over stdio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/servers/memory_server.py.bak
DELETED
|
@@ -1,570 +0,0 @@
|
|
| 1 |
-
# # servers/memory_server.py
|
| 2 |
-
# from fastmcp import FastMCP, tool
|
| 3 |
-
# import json, os, time
|
| 4 |
-
|
| 5 |
-
# app = FastMCP("memory-server")
|
| 6 |
-
# FILE = os.environ.get("GM_MEMORY_FILE", "memory.json")
|
| 7 |
-
|
| 8 |
-
# def _load():
|
| 9 |
-
# if os.path.exists(FILE):
|
| 10 |
-
# with open(FILE) as f: return json.load(f)
|
| 11 |
-
# return []
|
| 12 |
-
|
| 13 |
-
# def _save(history):
|
| 14 |
-
# with open(FILE, "w") as f: json.dump(history[-50:], f) # keep up to 50
|
| 15 |
-
|
| 16 |
-
# @tool
|
| 17 |
-
# def remember(text: str, meta: dict | None = None) -> dict:
|
| 18 |
-
# """
|
| 19 |
-
# Append an entry to memory.
|
| 20 |
-
# Args:
|
| 21 |
-
# text: str - content to store
|
| 22 |
-
# meta: dict - optional info like {"tone":"gentle","labels":["sad"]}
|
| 23 |
-
# Returns: {"ok": True, "size": <n>}
|
| 24 |
-
# """
|
| 25 |
-
# data = _load()
|
| 26 |
-
# data.append({"t": int(time.time()), "text": text, "meta": meta or {}})
|
| 27 |
-
# _save(data)
|
| 28 |
-
# return {"ok": True, "size": len(data)}
|
| 29 |
-
|
| 30 |
-
# @tool
|
| 31 |
-
# def recall(k: int = 3) -> dict:
|
| 32 |
-
# """
|
| 33 |
-
# Return last k entries from memory (most recent last).
|
| 34 |
-
# Args:
|
| 35 |
-
# k: int - how many items
|
| 36 |
-
# Returns: {"items":[...]}
|
| 37 |
-
# """
|
| 38 |
-
# data = _load()
|
| 39 |
-
# return {"items": data[-k:]}
|
| 40 |
-
|
| 41 |
-
# if __name__ == "__main__":
|
| 42 |
-
# app.run()
|
| 43 |
-
# servers/memory_server.py
|
| 44 |
-
# servers/memory_server.py
|
| 45 |
-
from __future__ import annotations
|
| 46 |
-
# ---- FastMCP import shim (works across versions) ----
|
| 47 |
-
# Ensures: FastMCP is imported and `@tool` is ALWAYS a callable decorator.
|
| 48 |
-
from typing import Callable, Any
|
| 49 |
-
|
| 50 |
-
try:
|
| 51 |
-
from fastmcp import FastMCP # present across versions
|
| 52 |
-
except Exception as e:
|
| 53 |
-
raise ImportError(f"FastMCP missing: {e}")
|
| 54 |
-
|
| 55 |
-
_tool_candidate: Any = None
|
| 56 |
-
# Try common locations
|
| 57 |
-
try:
|
| 58 |
-
from fastmcp import tool as _tool_candidate # newer API: function
|
| 59 |
-
except Exception:
|
| 60 |
-
try:
|
| 61 |
-
from fastmcp.tools import tool as _tool_candidate # older API: function
|
| 62 |
-
except Exception:
|
| 63 |
-
_tool_candidate = None
|
| 64 |
-
|
| 65 |
-
# If we somehow got a module instead of a function, try attribute
|
| 66 |
-
if _tool_candidate is not None and not callable(_tool_candidate):
|
| 67 |
-
try:
|
| 68 |
-
_tool_candidate = _tool_candidate.tool # some builds expose module.tools.tool
|
| 69 |
-
except Exception:
|
| 70 |
-
_tool_candidate = None
|
| 71 |
-
|
| 72 |
-
def tool(*dargs, **dkwargs):
|
| 73 |
-
"""
|
| 74 |
-
Wrapper that behaves correctly in both usages:
|
| 75 |
-
@tool
|
| 76 |
-
@tool(...)
|
| 77 |
-
If real decorator exists, delegate. Otherwise:
|
| 78 |
-
- If called as @tool (i.e., first arg is fn), return fn (no-op).
|
| 79 |
-
- If called as @tool(...), return a decorator that returns fn (no-op).
|
| 80 |
-
"""
|
| 81 |
-
if callable(_tool_candidate):
|
| 82 |
-
return _tool_candidate(*dargs, **dkwargs)
|
| 83 |
-
|
| 84 |
-
# No real decorator available — provide no-op behavior.
|
| 85 |
-
if dargs and callable(dargs[0]) and not dkwargs:
|
| 86 |
-
# Used as @tool
|
| 87 |
-
fn = dargs[0]
|
| 88 |
-
return fn
|
| 89 |
-
|
| 90 |
-
# Used as @tool(...)
|
| 91 |
-
def _noop_decorator(fn):
|
| 92 |
-
return fn
|
| 93 |
-
return _noop_decorator
|
| 94 |
-
# ---- end shim ----
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
import json, os, time, math, re
|
| 98 |
-
from typing import Dict, List, Optional, Any, Tuple
|
| 99 |
-
from collections import Counter
|
| 100 |
-
|
| 101 |
-
app = FastMCP("memory-server")
|
| 102 |
-
|
| 103 |
-
# ---------------------------
|
| 104 |
-
# Storage & limits
|
| 105 |
-
# ---------------------------
|
| 106 |
-
FILE = os.environ.get("GM_MEMORY_FILE", "memory.json")
|
| 107 |
-
STM_MAX = int(os.environ.get("GM_STM_MAX", "120"))
|
| 108 |
-
EP_MAX = int(os.environ.get("GM_EPISODES_MAX", "240"))
|
| 109 |
-
FACT_MAX= int(os.environ.get("GM_FACTS_MAX", "200"))
|
| 110 |
-
# ---------------------------
|
| 111 |
-
# Emotion Drift Analysis
|
| 112 |
-
# ---------------------------
|
| 113 |
-
def compute_emotional_direction(trajectory: List[Dict[str, Any]]) -> str:
|
| 114 |
-
"""
|
| 115 |
-
Analyze emotion trajectory to detect escalation/de-escalation/volatility/stability.
|
| 116 |
-
trajectory: list of {"label": str, "valence": float, "arousal": float, "ts": int}
|
| 117 |
-
"""
|
| 118 |
-
if len(trajectory) < 2:
|
| 119 |
-
return "stable"
|
| 120 |
-
|
| 121 |
-
# Get last 5 emotions for trend
|
| 122 |
-
recent = trajectory[-5:]
|
| 123 |
-
valences = [e.get("valence", 0.0) for e in recent]
|
| 124 |
-
arousals = [e.get("arousal", 0.5) for e in recent]
|
| 125 |
-
|
| 126 |
-
# Detect trend
|
| 127 |
-
valence_trend = valences[-1] - valences[0] # negative = more negative, positive = more positive
|
| 128 |
-
arousal_trend = arousals[-1] - arousals[0] # positive = escalating
|
| 129 |
-
|
| 130 |
-
# Classify
|
| 131 |
-
if arousal_trend > 0.15 and valence_trend < -0.1:
|
| 132 |
-
return "escalating" # Getting more activated and negative
|
| 133 |
-
elif arousal_trend < -0.15 and valence_trend > 0.1:
|
| 134 |
-
return "de-escalating" # Calming down and more positive
|
| 135 |
-
elif max(arousals) - min(arousals) > 0.3:
|
| 136 |
-
return "volatile" # Wide swings in arousal
|
| 137 |
-
else:
|
| 138 |
-
return "stable"
|
| 139 |
-
|
| 140 |
-
def get_emotion_trajectory(store: Dict[str, Any], k: int = 10) -> Tuple[List[Dict[str, Any]], str]:
|
| 141 |
-
"""
|
| 142 |
-
Returns last k emotion events from memory and the trajectory direction.
|
| 143 |
-
"""
|
| 144 |
-
stm = store.get("stm", [])
|
| 145 |
-
trajectory = []
|
| 146 |
-
|
| 147 |
-
for item in stm[-k:]:
|
| 148 |
-
event = item.get("event", {})
|
| 149 |
-
emotion = event.get("emotion", {})
|
| 150 |
-
if emotion and emotion.get("labels"):
|
| 151 |
-
trajectory.append({
|
| 152 |
-
"label": (emotion.get("labels") or ["neutral"])[0],
|
| 153 |
-
"valence": float(emotion.get("valence", 0.0)),
|
| 154 |
-
"arousal": float(emotion.get("arousal", 0.5)),
|
| 155 |
-
"ts": event.get("ts", int(time.time())),
|
| 156 |
-
"text": event.get("text", "")[:50] # First 50 chars
|
| 157 |
-
})
|
| 158 |
-
|
| 159 |
-
direction = compute_emotional_direction(trajectory)
|
| 160 |
-
return trajectory, direction
|
| 161 |
-
# ---------------------------
|
| 162 |
-
# File helpers & migrations
|
| 163 |
-
# ---------------------------
|
| 164 |
-
def _default_store() -> Dict[str, Any]:
|
| 165 |
-
return {"stm": [], "episodes": [], "facts": [], "meta": {"created": int(time.time()), "version": "1.3.0"}}
|
| 166 |
-
|
| 167 |
-
def _load() -> Dict[str, Any]:
|
| 168 |
-
if os.path.exists(FILE):
|
| 169 |
-
with open(FILE) as f:
|
| 170 |
-
try:
|
| 171 |
-
data = json.load(f)
|
| 172 |
-
# migrate flat list → tiered
|
| 173 |
-
if isinstance(data, list):
|
| 174 |
-
data = {"stm": data[-STM_MAX:], "episodes": [], "facts": [], "meta": {"created": int(time.time()), "version": "1.3.0"}}
|
| 175 |
-
# backfill ids in stm
|
| 176 |
-
changed = False
|
| 177 |
-
for i, it in enumerate(data.get("stm", [])):
|
| 178 |
-
if "id" not in it:
|
| 179 |
-
it["id"] = f"stm-{it.get('t', int(time.time()))}-{i}"
|
| 180 |
-
changed = True
|
| 181 |
-
if changed:
|
| 182 |
-
_save(data)
|
| 183 |
-
return data
|
| 184 |
-
except Exception:
|
| 185 |
-
return _default_store()
|
| 186 |
-
return _default_store()
|
| 187 |
-
|
| 188 |
-
def _save(store: Dict[str, Any]) -> None:
|
| 189 |
-
store["stm"] = store.get("stm", [])[-STM_MAX:]
|
| 190 |
-
store["episodes"] = store.get("episodes", [])[-EP_MAX:]
|
| 191 |
-
store["facts"] = store.get("facts", [])[-FACT_MAX:]
|
| 192 |
-
with open(FILE, "w") as f:
|
| 193 |
-
json.dump(store, f, ensure_ascii=False)
|
| 194 |
-
|
| 195 |
-
# ---------------------------
|
| 196 |
-
# Salience & decay (same as before)
|
| 197 |
-
# ---------------------------
|
| 198 |
-
def time_decay(ts: float, now: Optional[float] = None, half_life_hours: float = 72.0) -> float:
|
| 199 |
-
now = now or time.time()
|
| 200 |
-
dt_h = max(0.0, (now - ts) / 3600.0)
|
| 201 |
-
return 0.5 ** (dt_h / half_life_hours)
|
| 202 |
-
|
| 203 |
-
_WORD = re.compile(r"[a-zA-Z']+")
|
| 204 |
-
|
| 205 |
-
def keyword_set(text: str) -> set:
|
| 206 |
-
return set(w.lower() for w in _WORD.findall(text or "") if len(w) > 2)
|
| 207 |
-
|
| 208 |
-
def novelty_score(text: str, recent_texts: List[str], k: int = 10) -> float:
|
| 209 |
-
if not text:
|
| 210 |
-
return 0.0
|
| 211 |
-
A = keyword_set(text)
|
| 212 |
-
if not A:
|
| 213 |
-
return 0.0
|
| 214 |
-
recent = [keyword_set(t) for t in recent_texts[-k:] if t]
|
| 215 |
-
if not recent:
|
| 216 |
-
return 1.0
|
| 217 |
-
sims = []
|
| 218 |
-
for B in recent:
|
| 219 |
-
inter = len(A & B)
|
| 220 |
-
union = len(A | B) or 1
|
| 221 |
-
sims.append(inter / union)
|
| 222 |
-
sim = max(sims) if sims else 0.0
|
| 223 |
-
return max(0.0, 1.0 - sim)
|
| 224 |
-
|
| 225 |
-
def compute_salience(ev: Dict[str, Any], recent_texts: List[str]) -> float:
|
| 226 |
-
labels = ev.get("emotion", {}).get("labels") or []
|
| 227 |
-
conf = float(ev.get("emotion", {}).get("confidence") or 0.0)
|
| 228 |
-
valence= float(ev.get("emotion", {}).get("valence") or 0.0)
|
| 229 |
-
arousal= float(ev.get("emotion", {}).get("arousal") or 0.5)
|
| 230 |
-
sinc = float(ev.get("sincerity") or 0.0) / 100.0
|
| 231 |
-
text = ev.get("text", "")
|
| 232 |
-
|
| 233 |
-
affect = abs(valence) * (0.7 + 0.3 * arousal) * conf
|
| 234 |
-
nov = novelty_score(text, recent_texts)
|
| 235 |
-
user_flag = 1.0 if ev.get("user_pinned") else 0.0
|
| 236 |
-
boundary = 1.0 if ev.get("task_boundary") else 0.0
|
| 237 |
-
|
| 238 |
-
sal = 0.45 * affect + 0.25 * nov + 0.18 * user_flag + 0.12 * boundary + 0.10 * sinc
|
| 239 |
-
return round(max(0.0, min(1.0, sal)), 3)
|
| 240 |
-
|
| 241 |
-
# ---------------------------
|
| 242 |
-
# Episode & fact synthesis
|
| 243 |
-
# ---------------------------
|
| 244 |
-
def make_episode(ev: Dict[str, Any], salience: float) -> Dict[str, Any]:
|
| 245 |
-
emo = ev.get("emotion", {})
|
| 246 |
-
return {
|
| 247 |
-
"episode_id": ev.get("id") or f"ep-{int(time.time()*1000)}",
|
| 248 |
-
"ts_start": ev.get("ts") or int(time.time()),
|
| 249 |
-
"ts_end": ev.get("ts") or int(time.time()),
|
| 250 |
-
"summary": ev.get("summary") or (ev.get("text")[:140] if ev.get("text") else ""),
|
| 251 |
-
"topics": list(set(emo.get("labels") or [])) or ["misc"],
|
| 252 |
-
"emotion_peak": (emo.get("labels") or ["neutral"])[0],
|
| 253 |
-
"emotion_conf": float(emo.get("confidence") or 0.0),
|
| 254 |
-
"tone": emo.get("tone") or "neutral",
|
| 255 |
-
"salience": float(salience),
|
| 256 |
-
"provenance_event": ev.get("id"),
|
| 257 |
-
}
|
| 258 |
-
|
| 259 |
-
def cluster_topics(episodes: List[Dict[str, Any]]) -> Dict[str, List[Dict[str, Any]]]:
|
| 260 |
-
buckets: Dict[str, List[Dict[str, Any]]] = {}
|
| 261 |
-
for ep in episodes:
|
| 262 |
-
for t in ep.get("topics") or ["misc"]:
|
| 263 |
-
buckets.setdefault(t, []).append(ep)
|
| 264 |
-
return buckets
|
| 265 |
-
|
| 266 |
-
def synthesize_fact(topic: str, eps: List[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
|
| 267 |
-
if not eps:
|
| 268 |
-
return None
|
| 269 |
-
support = len(eps)
|
| 270 |
-
avg_sal = sum(e.get("salience", 0.0) for e in eps) / max(1, support)
|
| 271 |
-
avg_conf= sum(e.get("emotion_conf", 0.0) for e in eps) / max(1, support)
|
| 272 |
-
conf = max(0.0, min(1.0, 0.5 * avg_sal + 0.5 * avg_conf))
|
| 273 |
-
if support < 3 or conf < 0.6:
|
| 274 |
-
return None
|
| 275 |
-
tones = {}
|
| 276 |
-
for e in eps: tones[e.get("tone", "neutral")] = tones.get(e.get("tone", "neutral"), 0) + 1
|
| 277 |
-
top_tone = sorted(tones.items(), key=lambda kv: kv[1], reverse=True)[0][0]
|
| 278 |
-
return {
|
| 279 |
-
"fact_id": f"fact-{topic}-{int(time.time())}",
|
| 280 |
-
"proposition": f"Prefers {top_tone} tone for topic '{topic}'",
|
| 281 |
-
"support": support,
|
| 282 |
-
"confidence": round(conf, 2),
|
| 283 |
-
"last_updated": int(time.time()),
|
| 284 |
-
"topics": [topic],
|
| 285 |
-
"provenance_episode_ids": [e["episode_id"] for e in eps],
|
| 286 |
-
}
|
| 287 |
-
|
| 288 |
-
# ---------------------------
|
| 289 |
-
# ID helpers
|
| 290 |
-
# ---------------------------
|
| 291 |
-
def _ensure_stm_id(item: Dict[str, Any], idx: int) -> Dict[str, Any]:
|
| 292 |
-
if "id" not in item:
|
| 293 |
-
item["id"] = f"stm-{item.get('t', int(time.time()))}-{idx}"
|
| 294 |
-
return item
|
| 295 |
-
|
| 296 |
-
def _stm_text(item: Dict[str, Any]) -> str:
|
| 297 |
-
if "text" in item and isinstance(item["text"], str):
|
| 298 |
-
return item["text"]
|
| 299 |
-
return (item.get("event") or {}).get("text", "") or ""
|
| 300 |
-
|
| 301 |
-
def _collect_docs(store: Dict[str, Any], tier: Optional[str] = None) -> List[Tuple[str,str,str,int]]:
|
| 302 |
-
"""
|
| 303 |
-
Returns list of (id, tier, text, ts)
|
| 304 |
-
"""
|
| 305 |
-
docs: List[Tuple[str,str,str,int]] = []
|
| 306 |
-
if tier in (None, "stm"):
|
| 307 |
-
for i, it in enumerate(store.get("stm", [])):
|
| 308 |
-
it = _ensure_stm_id(it, i)
|
| 309 |
-
docs.append((it["id"], "stm", _stm_text(it), int(it.get("t", time.time()))))
|
| 310 |
-
if tier in (None, "episodes"):
|
| 311 |
-
for ep in store.get("episodes", []):
|
| 312 |
-
docs.append((ep.get("episode_id",""), "episodes", ep.get("summary",""), int(ep.get("ts_end", time.time()))))
|
| 313 |
-
if tier in (None, "facts"):
|
| 314 |
-
for f in store.get("facts", []):
|
| 315 |
-
docs.append((f.get("fact_id",""), "facts", f.get("proposition",""), int(f.get("last_updated", time.time()))))
|
| 316 |
-
return [d for d in docs if d[0] and d[2]]
|
| 317 |
-
|
| 318 |
-
# ---------------------------
|
| 319 |
-
# Simple TF-IDF search
|
| 320 |
-
# ---------------------------
|
| 321 |
-
def _tfidf_rank(query: str, docs: List[Tuple[str,str,str,int]], k: int = 5):
|
| 322 |
-
q_terms = [w for w in keyword_set(query)]
|
| 323 |
-
if not q_terms or not docs:
|
| 324 |
-
return []
|
| 325 |
-
# DF
|
| 326 |
-
df = Counter()
|
| 327 |
-
doc_terms = {}
|
| 328 |
-
for _id, _tier, text, _ts in docs:
|
| 329 |
-
terms = [w for w in keyword_set(text)]
|
| 330 |
-
doc_terms[_id] = terms
|
| 331 |
-
for t in set(terms):
|
| 332 |
-
df[t] += 1
|
| 333 |
-
N = len(docs)
|
| 334 |
-
idf = {t: math.log((N + 1) / (df[t] + 1)) + 1.0 for t in df}
|
| 335 |
-
# Score
|
| 336 |
-
scored = []
|
| 337 |
-
qset = set(q_terms)
|
| 338 |
-
for _id, _tier, text, _ts in docs:
|
| 339 |
-
terms = doc_terms[_id]
|
| 340 |
-
tf = Counter(terms)
|
| 341 |
-
score = 0.0
|
| 342 |
-
matched = []
|
| 343 |
-
for t in q_terms:
|
| 344 |
-
if tf[t] > 0:
|
| 345 |
-
score += tf[t] * idf.get(t, 1.0)
|
| 346 |
-
matched.append(t)
|
| 347 |
-
if score > 0:
|
| 348 |
-
scored.append((_id, _tier, text, _ts, score, matched))
|
| 349 |
-
scored.sort(key=lambda x: (-x[4], -x[3])) # score desc, then recent
|
| 350 |
-
return scored[:k]
|
| 351 |
-
|
| 352 |
-
# ---------------------------
|
| 353 |
-
# Tools (API)
|
| 354 |
-
# ---------------------------
|
| 355 |
-
|
| 356 |
-
@tool
|
| 357 |
-
def remember(text: str, meta: dict | None = None) -> dict:
|
| 358 |
-
store = _load()
|
| 359 |
-
item = {"t": int(time.time()), "text": text, "meta": meta or {}}
|
| 360 |
-
item["id"] = f"stm-{item['t']}-{len(store.get('stm', []))}"
|
| 361 |
-
store["stm"].append(item)
|
| 362 |
-
_save(store)
|
| 363 |
-
return {"ok": True, "stm_size": len(store["stm"]), "id": item["id"]}
|
| 364 |
-
|
| 365 |
-
@tool
|
| 366 |
-
def remember_event(event: dict, promote: bool = True) -> dict:
|
| 367 |
-
store = _load()
|
| 368 |
-
ev = dict(event or {})
|
| 369 |
-
ev.setdefault("ts", int(time.time()))
|
| 370 |
-
ev.setdefault("role", "user")
|
| 371 |
-
ev.setdefault("text", "")
|
| 372 |
-
if "salience" not in ev:
|
| 373 |
-
recent_texts = [it.get("text","") for it in store.get("stm", [])[-10:]]
|
| 374 |
-
ev["salience"] = compute_salience(ev, recent_texts)
|
| 375 |
-
stm_item = {
|
| 376 |
-
"id": f"stm-{ev['ts']}-{len(store.get('stm', []))}",
|
| 377 |
-
"t": ev["ts"],
|
| 378 |
-
"text": ev.get("text",""),
|
| 379 |
-
"event": ev
|
| 380 |
-
}
|
| 381 |
-
store["stm"].append(stm_item)
|
| 382 |
-
if promote:
|
| 383 |
-
aff_conf = float(ev.get("emotion", {}).get("confidence") or 0.0)
|
| 384 |
-
if ev["salience"] >= 0.45 or ev.get("user_pinned") or ev.get("task_boundary"):
|
| 385 |
-
ep = make_episode(ev, ev["salience"])
|
| 386 |
-
store["episodes"].append(ep)
|
| 387 |
-
_save(store)
|
| 388 |
-
return {"ok": True, "salience": ev["salience"], "id": stm_item["id"],
|
| 389 |
-
"sizes": {"stm": len(store["stm"]), "episodes": len(store["episodes"]), "facts": len(store["facts"])}}
|
| 390 |
-
|
| 391 |
-
@tool
|
| 392 |
-
def recall(k: int = 3) -> dict:
|
| 393 |
-
store = _load()
|
| 394 |
-
items = store.get("stm", [])[-k:]
|
| 395 |
-
return {"items": items}
|
| 396 |
-
|
| 397 |
-
@tool
|
| 398 |
-
def recall_episodes(k: int = 5, topic: str | None = None) -> dict:
|
| 399 |
-
store = _load()
|
| 400 |
-
eps = store.get("episodes", [])
|
| 401 |
-
if topic:
|
| 402 |
-
eps = [e for e in eps if topic in (e.get("topics") or [])]
|
| 403 |
-
return {"items": eps[-k:]}
|
| 404 |
-
|
| 405 |
-
@tool
|
| 406 |
-
def recall_facts() -> dict:
|
| 407 |
-
store = _load()
|
| 408 |
-
return {"facts": store.get("facts", [])}
|
| 409 |
-
|
| 410 |
-
@tool
|
| 411 |
-
def reflect() -> dict:
|
| 412 |
-
store = _load()
|
| 413 |
-
eps = store.get("episodes", [])
|
| 414 |
-
if not eps:
|
| 415 |
-
return {"ok": True, "updated": 0, "facts": store.get("facts", [])}
|
| 416 |
-
buckets = cluster_topics(eps)
|
| 417 |
-
new_facts = []
|
| 418 |
-
for topic, group in buckets.items():
|
| 419 |
-
fact = synthesize_fact(topic, group)
|
| 420 |
-
if fact:
|
| 421 |
-
existing = next((f for f in store["facts"] if f.get("proposition") == fact["proposition"]), None)
|
| 422 |
-
if existing:
|
| 423 |
-
existing["support"] = max(existing.get("support", 0), fact["support"])
|
| 424 |
-
existing["confidence"] = round(max(existing.get("confidence", 0.0), fact["confidence"]), 2)
|
| 425 |
-
existing["last_updated"] = int(time.time())
|
| 426 |
-
else:
|
| 427 |
-
new_facts.append(fact)
|
| 428 |
-
store["facts"].extend(new_facts)
|
| 429 |
-
_save(store)
|
| 430 |
-
return {"ok": True, "updated": len(new_facts), "facts": store["facts"]}
|
| 431 |
-
|
| 432 |
-
@tool
|
| 433 |
-
def prune(before_ts: int | None = None) -> dict:
|
| 434 |
-
store = _load()
|
| 435 |
-
stm = store.get("stm", [])
|
| 436 |
-
if before_ts:
|
| 437 |
-
stm = [it for it in stm if it.get("t", 0) >= int(before_ts)]
|
| 438 |
-
else:
|
| 439 |
-
cut = int(len(stm) * 0.75)
|
| 440 |
-
stm = stm[cut:]
|
| 441 |
-
store["stm"] = stm
|
| 442 |
-
_save(store)
|
| 443 |
-
return {"ok": True, "stm_size": len(store["stm"])}
|
| 444 |
-
|
| 445 |
-
# -------- NEW: search / get / delete / list --------
|
| 446 |
-
|
| 447 |
-
@tool
|
| 448 |
-
def search(query: str, tier: str | None = None, k: int = 5) -> dict:
|
| 449 |
-
"""
|
| 450 |
-
TF-IDF search across memory.
|
| 451 |
-
Args:
|
| 452 |
-
query: text to search
|
| 453 |
-
tier: one of {"stm","episodes","facts"} or None for all
|
| 454 |
-
k: number of results
|
| 455 |
-
Returns: {"results":[{"id","tier","text","ts","score","matched"}]}
|
| 456 |
-
"""
|
| 457 |
-
store = _load()
|
| 458 |
-
docs = _collect_docs(store, tier=tier)
|
| 459 |
-
ranked = _tfidf_rank(query, docs, k=k)
|
| 460 |
-
results = [{"id": _id, "tier": _tier, "text": text, "ts": ts, "score": round(score,3), "matched": matched}
|
| 461 |
-
for (_id, _tier, text, ts, score, matched) in ranked]
|
| 462 |
-
return {"results": results}
|
| 463 |
-
|
| 464 |
-
@tool
|
| 465 |
-
def get(item_id: str) -> dict:
|
| 466 |
-
"""
|
| 467 |
-
Fetch a single item by id from any tier.
|
| 468 |
-
"""
|
| 469 |
-
s = _load()
|
| 470 |
-
for it in s.get("stm", []):
|
| 471 |
-
if it.get("id") == item_id:
|
| 472 |
-
return {"tier": "stm", "item": it}
|
| 473 |
-
for ep in s.get("episodes", []):
|
| 474 |
-
if ep.get("episode_id") == item_id:
|
| 475 |
-
return {"tier": "episodes", "item": ep}
|
| 476 |
-
for f in s.get("facts", []):
|
| 477 |
-
if f.get("fact_id") == item_id:
|
| 478 |
-
return {"tier": "facts", "item": f}
|
| 479 |
-
return {"tier": None, "item": None}
|
| 480 |
-
|
| 481 |
-
@tool
|
| 482 |
-
def delete_by_id(item_id: str, tier: str | None = None) -> dict:
|
| 483 |
-
"""
|
| 484 |
-
Delete a single item by id. If tier is None, searches all tiers.
|
| 485 |
-
Returns {"ok": bool, "removed_from": <tier>|None}
|
| 486 |
-
"""
|
| 487 |
-
s = _load()
|
| 488 |
-
removed_from = None
|
| 489 |
-
if tier in (None, "stm"):
|
| 490 |
-
before = len(s["stm"])
|
| 491 |
-
s["stm"] = [it for it in s["stm"] if it.get("id") != item_id]
|
| 492 |
-
if len(s["stm"]) != before: removed_from = "stm"
|
| 493 |
-
if not removed_from and tier in (None, "episodes"):
|
| 494 |
-
before = len(s["episodes"])
|
| 495 |
-
s["episodes"] = [e for e in s["episodes"] if e.get("episode_id") != item_id]
|
| 496 |
-
if len(s["episodes"]) != before: removed_from = "episodes"
|
| 497 |
-
if not removed_from and tier in (None, "facts"):
|
| 498 |
-
before = len(s["facts"])
|
| 499 |
-
s["facts"] = [f for f in s["facts"] if f.get("fact_id") != item_id]
|
| 500 |
-
if len(s["facts"]) != before: removed_from = "facts"
|
| 501 |
-
if removed_from:
|
| 502 |
-
_save(s)
|
| 503 |
-
return {"ok": True, "removed_from": removed_from}
|
| 504 |
-
return {"ok": False, "removed_from": None}
|
| 505 |
-
|
| 506 |
-
@tool
|
| 507 |
-
def list_items(tier: str, k: int = 10) -> dict:
|
| 508 |
-
"""
|
| 509 |
-
List last k items in a tier.
|
| 510 |
-
tier ∈ {"stm","episodes","facts"}
|
| 511 |
-
"""
|
| 512 |
-
s = _load()
|
| 513 |
-
if tier == "stm":
|
| 514 |
-
return {"items": s.get("stm", [])[-k:]}
|
| 515 |
-
if tier == "episodes":
|
| 516 |
-
return {"items": s.get("episodes", [])[-k:]}
|
| 517 |
-
if tier == "facts":
|
| 518 |
-
return {"items": s.get("facts", [])[-k:]}
|
| 519 |
-
return {"items": []}
|
| 520 |
-
|
| 521 |
-
# -------- Diagnostics --------
|
| 522 |
-
|
| 523 |
-
@tool
|
| 524 |
-
def stats() -> dict:
|
| 525 |
-
s = _load()
|
| 526 |
-
return {
|
| 527 |
-
"stm": len(s.get("stm", [])),
|
| 528 |
-
"episodes": len(s.get("episodes", [])),
|
| 529 |
-
"facts": len(s.get("facts", [])),
|
| 530 |
-
"file": FILE,
|
| 531 |
-
"created": s.get("meta", {}).get("created"),
|
| 532 |
-
"version": s.get("meta", {}).get("version", "1.3.0"),
|
| 533 |
-
}
|
| 534 |
-
|
| 535 |
-
@tool
|
| 536 |
-
def health() -> dict:
|
| 537 |
-
try:
|
| 538 |
-
s = _load()
|
| 539 |
-
return {"status": "ok", "stm": len(s.get("stm", [])), "episodes": len(s.get("episodes", [])), "facts": len(s.get("facts", [])), "time": time.time(), "version": "1.3.0"}
|
| 540 |
-
except Exception as e:
|
| 541 |
-
return {"status": "error", "error": str(e), "time": time.time()}
|
| 542 |
-
|
| 543 |
-
@tool
|
| 544 |
-
def version() -> dict:
|
| 545 |
-
return {"name": "memory-server", "version": "1.3.0", "tiers": ["stm","episodes","facts"], "file": FILE}
|
| 546 |
-
|
| 547 |
-
@tool
|
| 548 |
-
def get_emotion_arc(k: int = 10) -> dict:
|
| 549 |
-
"""
|
| 550 |
-
Get the emotion trajectory (arc) for the last k events.
|
| 551 |
-
Returns: {"trajectory": [...], "direction": "escalating|de-escalating|volatile|stable", "summary": str}
|
| 552 |
-
"""
|
| 553 |
-
store = _load()
|
| 554 |
-
trajectory, direction = get_emotion_trajectory(store, k=k)
|
| 555 |
-
|
| 556 |
-
if not trajectory:
|
| 557 |
-
return {"trajectory": [], "direction": "unknown", "summary": "No emotion history"}
|
| 558 |
-
|
| 559 |
-
# Create readable summary
|
| 560 |
-
emotions = [t["label"] for t in trajectory]
|
| 561 |
-
summary = " → ".join(emotions[-5:]) if len(emotions) >= 5 else " → ".join(emotions)
|
| 562 |
-
|
| 563 |
-
return {
|
| 564 |
-
"trajectory": trajectory,
|
| 565 |
-
"direction": direction,
|
| 566 |
-
"summary": summary
|
| 567 |
-
}
|
| 568 |
-
|
| 569 |
-
if __name__ == "__main__":
|
| 570 |
-
app.run() # serves MCP over stdio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|