Jonas Leeb
commited on
Commit
·
7285400
1
Parent(s):
da3c141
all other embeddings implemented, changed to class
Browse files- BERT embeddings/bert_embedding.npz +3 -0
- TF-IDF embeddings/feature_names.txt +0 -0
- TF-IDF embeddings/tfidf_matrix_train.npz +3 -0
- Word2Vec embeddings/word2vec_embedding.npz +3 -0
- app.py +171 -95
- models/word2vec-trimmed.model +3 -0
- models/word2vec-trimmed.model.vectors.npy +3 -0
- requirements.txt +5 -1
BERT embeddings/bert_embedding.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:761d01d079ba768682ce1146f6f6405d45b3c84e4052a12b0372d774d02dc4ca
|
| 3 |
+
size 81117464
|
TF-IDF embeddings/feature_names.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
TF-IDF embeddings/tfidf_matrix_train.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3171341038274665272e760905eab46b6358481041a6efa6ed6f6669fc31ec5b
|
| 3 |
+
size 222218116
|
Word2Vec embeddings/word2vec_embedding.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37ca6935e9edc41c12756eef5e62b4393c1b9bdb2c1cc4a5d1359236d1d03cd8
|
| 3 |
+
size 65242631
|
app.py
CHANGED
|
@@ -1,110 +1,186 @@
|
|
| 1 |
import re
|
| 2 |
import gradio as gr
|
| 3 |
from scipy.sparse import load_npz
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import json
|
| 6 |
from datasets import load_dataset
|
| 7 |
import os
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
text = item["text"]
|
| 28 |
-
if not text or len(text.strip()) < 10:
|
| 29 |
-
continue
|
| 30 |
|
| 31 |
-
lines = text.splitlines()
|
| 32 |
-
title_lines = []
|
| 33 |
-
found_arxiv = False
|
| 34 |
-
arxiv_id = None
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
match = re.search(r'arxiv:\d{4}\.\d{4,5}v\d', line_strip, flags=re.IGNORECASE)
|
| 41 |
-
if match:
|
| 42 |
-
arxiv_id = match.group(0).lower()
|
| 43 |
-
elif not found_arxiv:
|
| 44 |
-
title_lines.append(line_strip)
|
| 45 |
-
else:
|
| 46 |
-
if line_strip.lower().startswith("abstract"):
|
| 47 |
-
break
|
| 48 |
-
|
| 49 |
-
title = " ".join(title_lines).strip()
|
| 50 |
-
documents.append(text.strip())
|
| 51 |
-
titles.append(title)
|
| 52 |
-
arxiv_ids.append(arxiv_id)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def keyword_match_ranking(query, top_n=5):
|
| 56 |
-
query_terms = query.lower().split()
|
| 57 |
-
query_indices = [i for i, term in enumerate(feature_names) if term in query_terms]
|
| 58 |
-
if not query_indices:
|
| 59 |
-
return []
|
| 60 |
-
|
| 61 |
-
scores = []
|
| 62 |
-
for doc_idx in range(tfidf_matrix.shape[0]):
|
| 63 |
-
doc_vector = tfidf_matrix[doc_idx]
|
| 64 |
-
doc_score = sum(doc_vector[0, i] for i in query_indices)
|
| 65 |
-
if doc_score > 0:
|
| 66 |
-
scores.append((doc_idx, doc_score))
|
| 67 |
-
|
| 68 |
-
scores.sort(key=lambda x: x[1], reverse=True)
|
| 69 |
-
return scores[:top_n]
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def snippet_before_abstract(text):
|
| 73 |
-
pattern = re.compile(r'a\s*b\s*s\s*t\s*r\s*a\s*c\s*t|i\s*n\s*t\s*r\s*o\s*d\s*u\s*c\s*t\s*i\s*o\s*n', re.IGNORECASE)
|
| 74 |
-
match = pattern.search(text)
|
| 75 |
-
if match:
|
| 76 |
-
return text[:match.start()].strip()
|
| 77 |
-
else:
|
| 78 |
-
return text[:100].strip()
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def search_function(query):
|
| 82 |
-
results = keyword_match_ranking(query)
|
| 83 |
-
if not results:
|
| 84 |
-
return "No results found."
|
| 85 |
-
|
| 86 |
-
output = ""
|
| 87 |
-
display_rank = 1
|
| 88 |
-
for idx, score in results:
|
| 89 |
-
if not arxiv_ids[idx]:
|
| 90 |
-
continue
|
| 91 |
-
|
| 92 |
-
link = f"https://arxiv.org/abs/{arxiv_ids[idx].replace('arxiv:', '')}"
|
| 93 |
-
snippet = snippet_before_abstract(documents[idx]).replace('\n', '<br>')
|
| 94 |
-
output += f"### Document {display_rank}\n"
|
| 95 |
-
output += f"[arXiv Link]({link})\n\n"
|
| 96 |
-
output += f"<pre>{snippet}</pre>\n\n---\n"
|
| 97 |
-
display_rank += 1
|
| 98 |
-
|
| 99 |
-
return output
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
iface = gr.Interface(
|
| 103 |
-
fn=search_function,
|
| 104 |
-
inputs=gr.Textbox(lines=1, placeholder="Enter your search query"),
|
| 105 |
-
outputs=gr.Markdown(),
|
| 106 |
-
title="arXiv Search Engine",
|
| 107 |
-
description="Search TF-IDF encoded arXiv papers by keyword.",
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
iface.launch()
|
|
|
|
| 1 |
import re
|
| 2 |
import gradio as gr
|
| 3 |
from scipy.sparse import load_npz
|
| 4 |
+
import torch
|
| 5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
from sklearn.preprocessing import normalize
|
| 7 |
+
from transformers import BertTokenizer, BertModel
|
| 8 |
import numpy as np
|
| 9 |
import json
|
| 10 |
from datasets import load_dataset
|
| 11 |
import os
|
| 12 |
+
from gensim.models import KeyedVectors
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class ArxivSearch:
|
| 17 |
+
def __init__(self, dataset, embedding="tfidf"):
|
| 18 |
+
self.dataset = dataset
|
| 19 |
+
self.embedding = embedding
|
| 20 |
+
self.documents = []
|
| 21 |
+
self.titles = []
|
| 22 |
+
self.raw_texts = []
|
| 23 |
+
self.arxiv_ids = []
|
| 24 |
+
|
| 25 |
+
self.embedding_dropdown = gr.Dropdown(
|
| 26 |
+
choices=["tfidf", "word2vec", "bert"],
|
| 27 |
+
value="tfidf",
|
| 28 |
+
label="Model"
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
self.iface = gr.Interface(
|
| 32 |
+
fn=self.search_function,
|
| 33 |
+
inputs=[
|
| 34 |
+
gr.Textbox(lines=1, placeholder="Enter your search query"),
|
| 35 |
+
self.embedding_dropdown
|
| 36 |
+
],
|
| 37 |
+
outputs=gr.Markdown(),
|
| 38 |
+
title="arXiv Search Engine",
|
| 39 |
+
description="Search arXiv papers by keyword and embedding model.",
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
self.load_data(dataset)
|
| 43 |
+
self.load_model(embedding)
|
| 44 |
+
|
| 45 |
+
self.iface.launch()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# # --- Load data and embeddings ---
|
| 49 |
+
# with open("feature_names.txt", "r") as f:
|
| 50 |
+
# feature_names = [line.strip() for line in f]
|
| 51 |
+
|
| 52 |
+
# tfidf_matrix = load_npz("tfidf_matrix_train.npz")
|
| 53 |
+
|
| 54 |
+
# Load dataset and initialize search engine
|
| 55 |
+
|
| 56 |
+
def load_data(self, dataset):
|
| 57 |
+
train_data = dataset["train"]
|
| 58 |
+
for item in train_data.select(range(len(train_data))):
|
| 59 |
+
text = item["text"]
|
| 60 |
+
if not text or len(text.strip()) < 10:
|
| 61 |
+
continue
|
| 62 |
+
|
| 63 |
+
lines = text.splitlines()
|
| 64 |
+
title_lines = []
|
| 65 |
+
found_arxiv = False
|
| 66 |
+
arxiv_id = None
|
| 67 |
+
|
| 68 |
+
for line in lines:
|
| 69 |
+
line_strip = line.strip()
|
| 70 |
+
if not found_arxiv and line_strip.lower().startswith("arxiv:"):
|
| 71 |
+
found_arxiv = True
|
| 72 |
+
match = re.search(r'arxiv:\d{4}\.\d{4,5}v\d', line_strip, flags=re.IGNORECASE)
|
| 73 |
+
if match:
|
| 74 |
+
arxiv_id = match.group(0).lower()
|
| 75 |
+
elif not found_arxiv:
|
| 76 |
+
title_lines.append(line_strip)
|
| 77 |
+
else:
|
| 78 |
+
if line_strip.lower().startswith("abstract"):
|
| 79 |
+
break
|
| 80 |
+
|
| 81 |
+
title = " ".join(title_lines).strip()
|
| 82 |
+
|
| 83 |
+
self.raw_texts.append(text.strip())
|
| 84 |
+
self.titles.append(title)
|
| 85 |
+
self.documents.append(text.strip())
|
| 86 |
+
self.arxiv_ids.append(arxiv_id)
|
| 87 |
+
|
| 88 |
+
def keyword_match_ranking(self, query, top_n=5):
|
| 89 |
+
query_terms = query.lower().split()
|
| 90 |
+
query_indices = [i for i, term in enumerate(self.feature_names) if term in query_terms]
|
| 91 |
+
if not query_indices:
|
| 92 |
+
return []
|
| 93 |
+
scores = []
|
| 94 |
+
for doc_idx in range(self.tfidf_matrix.shape[0]):
|
| 95 |
+
doc_vector = self.tfidf_matrix[doc_idx]
|
| 96 |
+
doc_score = sum(doc_vector[0, i] for i in query_indices)
|
| 97 |
+
if doc_score > 0:
|
| 98 |
+
scores.append((doc_idx, doc_score))
|
| 99 |
+
scores.sort(key=lambda x: x[1], reverse=True)
|
| 100 |
+
return scores[:top_n]
|
| 101 |
+
|
| 102 |
+
def word2vec_search(self, query, top_n=5):
|
| 103 |
+
tokens = [word for word in query.split() if word in self.wv_model.key_to_index]
|
| 104 |
+
if not tokens:
|
| 105 |
+
return []
|
| 106 |
+
vectors = np.array([self.wv_model[word] for word in tokens])
|
| 107 |
+
query_vec = normalize(np.mean(vectors, axis=0).reshape(1, -1))
|
| 108 |
+
sims = cosine_similarity(query_vec, self.word2vec_embeddings).flatten()
|
| 109 |
+
top_indices = sims.argsort()[::-1][:top_n]
|
| 110 |
+
return [(i, sims[i]) for i in top_indices]
|
| 111 |
+
|
| 112 |
+
def bert_search(self, query, top_n=5):
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
|
| 115 |
+
outputs = self.model(**inputs)
|
| 116 |
+
query_vec = normalize(outputs.last_hidden_state[:, 0, :].numpy())
|
| 117 |
+
sims = cosine_similarity(query_vec, self.bert_embeddings).flatten()
|
| 118 |
+
top_indices = sims.argsort()[::-1][:top_n]
|
| 119 |
+
return [(i, sims[i]) for i in top_indices]
|
| 120 |
+
|
| 121 |
+
def load_model(self, embedding):
|
| 122 |
+
if embedding == "tfidf":
|
| 123 |
+
self.tfidf_matrix = load_npz("TF-IDF embeddings/tfidf_matrix_train.npz")
|
| 124 |
+
with open("TF-IDF embeddings/feature_names.txt", "r") as f:
|
| 125 |
+
self.feature_names = [line.strip() for line in f.readlines()]
|
| 126 |
+
elif embedding == "word2vec":
|
| 127 |
+
# Use trimmed model here
|
| 128 |
+
self.word2vec_embeddings = normalize(np.load("Word2Vec embeddings/word2vec_embedding.npz")["word2vec_embedding"])
|
| 129 |
+
self.wv_model = KeyedVectors.load("models/word2vec-trimmed.model")
|
| 130 |
+
elif embedding == "bert":
|
| 131 |
+
self.bert_embeddings = normalize(np.load("BERT embeddings/bert_embedding.npz")["bert_embedding"])
|
| 132 |
+
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 133 |
+
self.model = BertModel.from_pretrained('bert-base-uncased')
|
| 134 |
+
self.model.eval()
|
| 135 |
+
else:
|
| 136 |
+
raise ValueError(f"Unsupported embedding type: {embedding}")
|
| 137 |
+
|
| 138 |
+
def on_model_change(self, change):
|
| 139 |
+
new_model = change["new"]
|
| 140 |
+
self.embedding = new_model
|
| 141 |
+
self.load_model(new_model)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def snippet_before_abstract(self, text):
|
| 145 |
+
pattern = re.compile(r'a\s*b\s*s\s*t\s*r\s*a\s*c\s*t|i\s*n\s*t\s*r\s*o\s*d\s*u\s*c\s*t\s*i\s*o\s*n', re.IGNORECASE)
|
| 146 |
+
match = pattern.search(text)
|
| 147 |
+
if match:
|
| 148 |
+
return text[:match.start()].strip()
|
| 149 |
+
else:
|
| 150 |
+
return text[:100].strip()
|
| 151 |
|
| 152 |
|
| 153 |
+
def search_function(self, query, embedding):
|
| 154 |
+
# Load or switch embedding model here if needed
|
| 155 |
+
if embedding == "tfidf":
|
| 156 |
+
results = self.keyword_match_ranking(query)
|
| 157 |
+
elif embedding == "word2vec":
|
| 158 |
+
results = self.word2vec_search(query)
|
| 159 |
+
elif embedding == "bert":
|
| 160 |
+
results = self.bert_search(query)
|
| 161 |
+
else:
|
| 162 |
+
return "No results found."
|
| 163 |
|
| 164 |
+
if not results:
|
| 165 |
+
return "No results found."
|
| 166 |
|
| 167 |
+
output = ""
|
| 168 |
+
display_rank = 1
|
| 169 |
+
for idx, score in results:
|
| 170 |
+
if not self.arxiv_ids[idx]:
|
| 171 |
+
continue
|
| 172 |
|
| 173 |
+
link = f"https://arxiv.org/abs/{self.arxiv_ids[idx].replace('arxiv:', '')}"
|
| 174 |
+
snippet = self.snippet_before_abstract(self.documents[idx]).replace('\n', '<br>')
|
| 175 |
+
output += f"### Document {display_rank}\n"
|
| 176 |
+
output += f"[arXiv Link]({link})\n\n"
|
| 177 |
+
output += f"<pre>{snippet}</pre>\n\n---\n"
|
| 178 |
+
display_rank += 1
|
| 179 |
|
| 180 |
+
return output
|
|
|
|
|
|
|
|
|
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
if __name__ == "__main__":
|
| 184 |
+
dataset = load_dataset("ccdv/arxiv-classification", "no_ref") # replace with your dataset
|
| 185 |
+
search_engine = ArxivSearch(dataset, embedding="tfidf") # Initialize with tfidf or any other embedding
|
| 186 |
+
search_engine.iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/word2vec-trimmed.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:785f477908089d8e1d5e1ce94f04ccbecb2bdb655f6cc468b7bacaac3e40d663
|
| 3 |
+
size 3735368
|
models/word2vec-trimmed.model.vectors.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01c2c062175d68b6f745b6e798d91033e3d46c0e23571d5bb37b0450d2ff5293
|
| 3 |
+
size 234224528
|
requirements.txt
CHANGED
|
@@ -1,4 +1,8 @@
|
|
| 1 |
gradio
|
| 2 |
scipy
|
| 3 |
numpy
|
| 4 |
-
datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
scipy
|
| 3 |
numpy
|
| 4 |
+
datasets
|
| 5 |
+
torch
|
| 6 |
+
gensim
|
| 7 |
+
sklearn
|
| 8 |
+
transformers
|