File size: 9,025 Bytes
a596a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
from langchain_huggingface import HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA

import gradio as gr
import warnings
import uuid


MODEL_OPTIONS = [
    "meta-llama/Llama-3.2-3B-Instruct",
    "meta-llama/Llama-3.1-8B-Instruct",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "google/gemma-2-9b-it",
    "google/gemma-2-27b-it",
    "Qwen/Qwen2.5-7B-Instruct",
    "Qwen/Qwen2.5-14B-Instruct",
    "microsoft/Phi-3.5-mini-instruct",
    "HuggingFaceH4/zephyr-7b-beta"
]


# Suppress warnings
def warn(*args, **kwargs):
    pass


warnings.warn = warn
warnings.filterwarnings("ignore")


# ---------------------------
# Get credentials from environment variables
# ---------------------------
def get_huggingface_token():
    """
    Get HuggingFace API token from environment.
    Set this in your Space settings under Settings > Repository secrets:
    - HF_TOKEN or HUGGINGFACE_TOKEN
    """
    token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
    
    if not token:
        raise ValueError(
            "HF_TOKEN not found. Please set it in your HuggingFace Space secrets."
        )
    
    return token


# ---------------------------
# LLM
# ---------------------------
def get_llm(model_id: str = MODEL_OPTIONS[0], max_tokens: int = 256, temperature: float = 0.8):
    token = get_huggingface_token()
    
    llm = HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_tokens,
        temperature=temperature,
        huggingfacehub_api_token=token,
    )
    return llm


# ---------------------------
# Document loader
# ---------------------------
def document_loader(file):
    # Handle file path string from Gradio
    file_path = file if isinstance(file, str) else file.name
    loader = PyPDFLoader(file_path)
    loaded_document = loader.load()
    return loaded_document


# ---------------------------
# Text splitter
# ---------------------------
def text_splitter(data, chunk_size: int = 500, chunk_overlap: int = 50):
    splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap,
        length_function=len,
    )
    chunks = splitter.split_documents(data)
    return chunks


# ---------------------------
# Embedding model
# ---------------------------
def get_embedding_model(model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
    """
    Create HuggingFace embedding model.
    Using sentence-transformers for efficient embeddings.
    """
    embedding = HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs={'device': 'cpu'},
        encode_kwargs={'normalize_embeddings': True}
    )
    return embedding


# ---------------------------
# Vector DB
# ---------------------------
def vector_database(chunks, embedding_model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
    embedding_model = get_embedding_model(embedding_model_name)
    
    # Create unique collection name to avoid reusing cached data
    collection_name = f"rag_collection_{uuid.uuid4().hex[:8]}"

    vectordb = Chroma.from_documents(
        chunks, 
        embedding_model,
        collection_name=collection_name
    )
    return vectordb


# ---------------------------
# Retriever
# ---------------------------
def retriever(file, chunk_size: int = 500, chunk_overlap: int = 50, embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2"):
    splits = document_loader(file)
    chunks = text_splitter(splits, chunk_size, chunk_overlap)
    vectordb = vector_database(chunks, embedding_model)
    retriever_obj = vectordb.as_retriever()
    return retriever_obj


# ---------------------------
# QA Chain
# ---------------------------
def retriever_qa(file, query, model_choice, max_tokens, temperature, embedding_model, chunk_size, chunk_overlap):
    if not file:
        return "Please upload a PDF file first."
    
    if not query.strip():
        return "Please enter a query."
    
    try:
        selected_model = model_choice or MODEL_OPTIONS[0]
        llm = get_llm(selected_model, int(max_tokens), float(temperature))
        retriever_obj = retriever(file, int(chunk_size), int(chunk_overlap), embedding_model)
        qa = RetrievalQA.from_chain_type(
            llm=llm,
            chain_type="stuff",
            retriever=retriever_obj,
            return_source_documents=True,
        )
        response = qa.invoke({"query": query})
        return response['result']
    except Exception as e:
        return f"Error: {str(e)}"


# ---------------------------
# Gradio Interface
# ---------------------------
with gr.Blocks(title="QA Bot - PDF Question Answering") as demo:
    gr.Markdown("# πŸ“„ QA Bot - PDF Question Answering")
    gr.Markdown(
        "Upload a PDF document and ask questions about its content. "
        "Powered by HuggingFace models and LangChain."
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            file_input = gr.File(
                label="Upload PDF File",
                file_count="single",
                file_types=[".pdf"],
                type="filepath"
            )
            
            query_input = gr.Textbox(
                label="Your Question",
                lines=3,
                placeholder="Ask a question about the uploaded document..."
            )
            
            model_dropdown = gr.Dropdown(
                label="LLM Model",
                choices=MODEL_OPTIONS,
                value=MODEL_OPTIONS[0],
            )
            
            with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                max_tokens_slider = gr.Slider(
                    label="Max New Tokens",
                    minimum=50,
                    maximum=2048,
                    value=256,
                    step=1,
                    info="Maximum number of tokens in the generated output"
                )
                
                temperature_slider = gr.Slider(
                    label="Temperature",
                    minimum=0.0,
                    maximum=2.0,
                    value=0.8,
                    step=0.1,
                    info="Controls randomness/creativity of responses"
                )
                
                truncate_slider = gr.Dropdown(
                    label="Embedding Model",
                    choices=[
                        "sentence-transformers/all-MiniLM-L6-v2",
                        "sentence-transformers/all-mpnet-base-v2",
                        "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
                        "BAAI/bge-small-en-v1.5",
                        "BAAI/bge-base-en-v1.5"
                    ],
                    value="sentence-transformers/all-MiniLM-L6-v2",
                    info="Model used for generating embeddings"
                )
                
                chunk_size_slider = gr.Slider(
                    label="Chunk Size",
                    minimum=100,
                    maximum=2000,
                    value=500,
                    step=50,
                    info="Size of text chunks for processing"
                )
                
                chunk_overlap_slider = gr.Slider(
                    label="Chunk Overlap",
                    minimum=0,
                    maximum=500,
                    value=50,
                    step=10,
                    info="Overlap between consecutive chunks"
                )
            
            submit_btn = gr.Button("Ask Question", variant="primary")
        
        with gr.Column(scale=1):
            output_text = gr.Textbox(
                label="Answer",
                lines=15,
                show_copy_button=True
            )
    
    submit_btn.click(
        fn=retriever_qa,
        inputs=[
            file_input,
            query_input,
            model_dropdown,
            max_tokens_slider,
            temperature_slider,
            truncate_slider,
            chunk_size_slider,
            chunk_overlap_slider
        ],
        outputs=output_text
    )
    
    gr.Markdown(
        """
        ### πŸ“ Instructions
        1. Upload a PDF document
        2. Enter your question in the text box
        3. (Optional) Select a different LLM model
        4. (Optional) Adjust advanced settings for fine-tuning
        5. Click "Ask Question" to get an answer
        
        ### πŸ” Setup
        This Space requires a HuggingFace API token. Set the following in your Space secrets:
        - `HF_TOKEN`: Your HuggingFace API token (get it from https://huggingface.co/settings/tokens)
        """
    )


# ---------------------------
# Launch the app
# ---------------------------
if __name__ == "__main__":
    demo.launch()