Spaces:
Runtime error
Runtime error
Add multi-quantize functions, logging of the use, and export to organizations (#1)
Browse files- Add multi-quantize functions, logging of the use, and export to organizations (999dc22bb19aad9be86783e96e0ac2edf302bff1)
Co-authored-by: Ze <[email protected]>
app.py
CHANGED
|
@@ -1,30 +1,39 @@
|
|
| 1 |
import os
|
| 2 |
import subprocess
|
| 3 |
import signal
|
| 4 |
-
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 5 |
-
import gradio as gr
|
| 6 |
import tempfile
|
| 7 |
-
|
| 8 |
-
from huggingface_hub import HfApi, ModelCard, whoami
|
| 9 |
-
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 10 |
from pathlib import Path
|
| 11 |
from textwrap import dedent
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
# used for restarting the space
|
| 16 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 17 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
# escape HTML for logging
|
| 20 |
def escape(s: str) -> str:
|
| 21 |
-
|
| 22 |
-
s = s.replace("<", "<")
|
| 23 |
-
s = s.replace(">", ">")
|
| 24 |
-
s = s.replace('"', """)
|
| 25 |
-
s = s.replace("\n", "<br/>")
|
| 26 |
-
return s
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
| 29 |
imatrix_command = [
|
| 30 |
"./llama.cpp/llama-imatrix",
|
|
@@ -54,13 +63,13 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
|
|
| 54 |
|
| 55 |
print("Importance matrix generation completed.")
|
| 56 |
|
| 57 |
-
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
| 58 |
print(f"Model path: {model_path}")
|
| 59 |
print(f"Output dir: {outdir}")
|
| 60 |
|
| 61 |
if oauth_token is None or oauth_token.token is None:
|
| 62 |
raise ValueError("You have to be logged in.")
|
| 63 |
-
|
| 64 |
split_cmd = [
|
| 65 |
"./llama.cpp/llama-gguf-split",
|
| 66 |
"--split",
|
|
@@ -77,12 +86,12 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
|
|
| 77 |
split_cmd.append(model_path)
|
| 78 |
split_cmd.append(model_path_prefix)
|
| 79 |
|
| 80 |
-
print(f"Split command: {split_cmd}")
|
| 81 |
-
|
| 82 |
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
|
| 83 |
-
print(f"Split command stdout: {result.stdout}")
|
| 84 |
-
print(f"Split command stderr: {result.stderr}")
|
| 85 |
-
|
| 86 |
if result.returncode != 0:
|
| 87 |
stderr_str = result.stderr.decode("utf-8")
|
| 88 |
raise Exception(f"Error splitting the model: {stderr_str}")
|
|
@@ -93,11 +102,14 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
|
|
| 93 |
os.remove(model_path)
|
| 94 |
|
| 95 |
model_file_prefix = model_path_prefix.split('/')[-1]
|
| 96 |
-
print(f"Model file name prefix: {model_file_prefix}")
|
| 97 |
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
|
| 98 |
if sharded_model_files:
|
| 99 |
print(f"Sharded model files: {sharded_model_files}")
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
for file in sharded_model_files:
|
| 102 |
file_path = os.path.join(outdir, file)
|
| 103 |
print(f"Uploading file: {file_path}")
|
|
@@ -111,214 +123,111 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
|
|
| 111 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
| 112 |
else:
|
| 113 |
raise Exception("No sharded files found.")
|
| 114 |
-
|
| 115 |
print("Sharded model has been uploaded successfully!")
|
| 116 |
|
| 117 |
-
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo,
|
|
|
|
|
|
|
| 118 |
if oauth_token is None or oauth_token.token is None:
|
| 119 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
|
|
|
| 127 |
model_name = model_id.split('/')[-1]
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
if any(
|
| 137 |
-
file.path.endswith(".safetensors")
|
| 138 |
-
for file in api.list_repo_tree(
|
| 139 |
-
repo_id=model_id,
|
| 140 |
-
recursive=True,
|
| 141 |
-
)
|
| 142 |
-
)
|
| 143 |
-
else "*.bin"
|
| 144 |
-
)
|
| 145 |
-
|
| 146 |
-
dl_pattern += [pattern]
|
| 147 |
-
|
| 148 |
-
if not os.path.exists("downloads"):
|
| 149 |
-
os.makedirs("downloads")
|
| 150 |
-
|
| 151 |
-
if not os.path.exists("outputs"):
|
| 152 |
-
os.makedirs("outputs")
|
| 153 |
-
|
| 154 |
-
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
|
| 155 |
-
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
| 156 |
-
|
| 157 |
-
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
|
| 158 |
-
# Keep the model name as the dirname so the model name metadata is populated correctly
|
| 159 |
-
local_dir = Path(tmpdir)/model_name
|
| 160 |
-
print(local_dir)
|
| 161 |
-
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 162 |
-
print("Model downloaded successfully!")
|
| 163 |
-
print(f"Current working directory: {os.getcwd()}")
|
| 164 |
-
print(f"Model directory contents: {os.listdir(local_dir)}")
|
| 165 |
-
|
| 166 |
-
config_dir = local_dir/"config.json"
|
| 167 |
-
adapter_config_dir = local_dir/"adapter_config.json"
|
| 168 |
-
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
| 169 |
-
raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')
|
| 170 |
-
|
| 171 |
-
result = subprocess.run([
|
| 172 |
-
"python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16
|
| 173 |
-
], shell=False, capture_output=True)
|
| 174 |
-
print(result)
|
| 175 |
-
if result.returncode != 0:
|
| 176 |
-
stderr_str = result.stderr.decode("utf-8")
|
| 177 |
-
raise Exception(f"Error converting to fp16: {stderr_str}")
|
| 178 |
-
print("Model converted to fp16 successfully!")
|
| 179 |
-
print(f"Converted model path: {fp16}")
|
| 180 |
-
|
| 181 |
-
imatrix_path = Path(outdir)/"imatrix.dat"
|
| 182 |
-
|
| 183 |
-
if use_imatrix:
|
| 184 |
-
if train_data_file:
|
| 185 |
-
train_data_path = train_data_file.name
|
| 186 |
-
else:
|
| 187 |
-
train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset
|
| 188 |
-
|
| 189 |
-
print(f"Training data file path: {train_data_path}")
|
| 190 |
-
|
| 191 |
-
if not os.path.isfile(train_data_path):
|
| 192 |
-
raise Exception(f"Training data file not found: {train_data_path}")
|
| 193 |
-
|
| 194 |
-
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
| 195 |
-
else:
|
| 196 |
-
print("Not using imatrix quantization.")
|
| 197 |
-
|
| 198 |
-
# Quantize the model
|
| 199 |
-
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
| 200 |
-
quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
|
| 201 |
-
if use_imatrix:
|
| 202 |
-
quantise_ggml = [
|
| 203 |
-
"./llama.cpp/llama-quantize",
|
| 204 |
-
"--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
|
| 205 |
-
]
|
| 206 |
-
else:
|
| 207 |
-
quantise_ggml = [
|
| 208 |
-
"./llama.cpp/llama-quantize",
|
| 209 |
-
fp16, quantized_gguf_path, q_method
|
| 210 |
-
]
|
| 211 |
-
result = subprocess.run(quantise_ggml, shell=False, capture_output=True)
|
| 212 |
-
if result.returncode != 0:
|
| 213 |
-
stderr_str = result.stderr.decode("utf-8")
|
| 214 |
-
raise Exception(f"Error quantizing: {stderr_str}")
|
| 215 |
-
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
| 216 |
-
print(f"Quantized model path: {quantized_gguf_path}")
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
new_repo_id = new_repo_url.repo_id
|
| 222 |
-
print("Repo created successfully!", new_repo_url)
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
### Server:
|
| 254 |
-
```bash
|
| 255 |
-
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
| 256 |
-
```
|
| 257 |
-
|
| 258 |
-
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
| 259 |
-
|
| 260 |
-
Step 1: Clone llama.cpp from GitHub.
|
| 261 |
-
```
|
| 262 |
-
git clone https://github.com/ggerganov/llama.cpp
|
| 263 |
-
```
|
| 264 |
-
|
| 265 |
-
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
| 266 |
-
```
|
| 267 |
-
cd llama.cpp && LLAMA_CURL=1 make
|
| 268 |
-
```
|
| 269 |
-
|
| 270 |
-
Step 3: Run inference through the main binary.
|
| 271 |
-
```
|
| 272 |
-
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
| 273 |
-
```
|
| 274 |
-
or
|
| 275 |
-
```
|
| 276 |
-
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
| 277 |
-
```
|
| 278 |
-
"""
|
| 279 |
-
)
|
| 280 |
-
readme_path = Path(outdir)/"README.md"
|
| 281 |
-
card.save(readme_path)
|
| 282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
if split_model:
|
| 284 |
-
split_upload_model(
|
| 285 |
else:
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
)
|
| 293 |
-
except Exception as e:
|
| 294 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
| 295 |
-
|
| 296 |
-
if os.path.isfile(imatrix_path):
|
| 297 |
-
try:
|
| 298 |
-
print(f"Uploading imatrix.dat: {imatrix_path}")
|
| 299 |
-
api.upload_file(
|
| 300 |
-
path_or_fileobj=imatrix_path,
|
| 301 |
-
path_in_repo="imatrix.dat",
|
| 302 |
-
repo_id=new_repo_id,
|
| 303 |
-
)
|
| 304 |
-
except Exception as e:
|
| 305 |
-
raise Exception(f"Error uploading imatrix.dat: {e}")
|
| 306 |
-
|
| 307 |
-
api.upload_file(
|
| 308 |
-
path_or_fileobj=readme_path,
|
| 309 |
-
path_in_repo="README.md",
|
| 310 |
-
repo_id=new_repo_id,
|
| 311 |
-
)
|
| 312 |
-
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
| 313 |
-
|
| 314 |
-
# end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here
|
| 315 |
-
|
| 316 |
-
return (
|
| 317 |
-
f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
|
| 318 |
-
"llama.png",
|
| 319 |
-
)
|
| 320 |
-
except Exception as e:
|
| 321 |
-
return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
|
| 322 |
|
| 323 |
|
| 324 |
css="""/* Custom CSS to allow scrolling */
|
|
@@ -330,20 +239,40 @@ model_id = HuggingfaceHubSearch(
|
|
| 330 |
search_type="model",
|
| 331 |
)
|
| 332 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
q_method = gr.Dropdown(
|
| 334 |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
| 335 |
label="Quantization Method",
|
| 336 |
info="GGML quantization type",
|
| 337 |
value="Q4_K_M",
|
| 338 |
filterable=False,
|
| 339 |
-
visible=True
|
|
|
|
| 340 |
)
|
| 341 |
|
| 342 |
imatrix_q_method = gr.Dropdown(
|
| 343 |
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
| 344 |
label="Imatrix Quantization Method",
|
| 345 |
info="GGML imatrix quants type",
|
| 346 |
-
value="IQ4_NL",
|
| 347 |
filterable=False,
|
| 348 |
visible=False
|
| 349 |
)
|
|
@@ -386,58 +315,49 @@ split_max_size = gr.Textbox(
|
|
| 386 |
)
|
| 387 |
|
| 388 |
iface = gr.Interface(
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
|
|
|
| 413 |
gr.LoginButton(min_width=250)
|
| 414 |
|
| 415 |
-
iface.render()
|
| 416 |
|
| 417 |
-
def update_split_visibility(split_model):
|
| 418 |
-
return gr.update(visible=split_model), gr.update(visible=split_model)
|
| 419 |
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
|
|
|
|
|
|
| 425 |
|
| 426 |
-
def update_visibility(use_imatrix):
|
| 427 |
-
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
| 428 |
-
|
| 429 |
-
use_imatrix.change(
|
| 430 |
-
fn=update_visibility,
|
| 431 |
-
inputs=use_imatrix,
|
| 432 |
-
outputs=[q_method, imatrix_q_method, train_data_file]
|
| 433 |
-
)
|
| 434 |
|
| 435 |
def restart_space():
|
| 436 |
-
HfApi().restart_space(repo_id="
|
| 437 |
|
| 438 |
scheduler = BackgroundScheduler()
|
| 439 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
| 440 |
scheduler.start()
|
| 441 |
|
| 442 |
-
# Launch the interface
|
| 443 |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|
|
|
| 1 |
import os
|
| 2 |
import subprocess
|
| 3 |
import signal
|
|
|
|
|
|
|
| 4 |
import tempfile
|
|
|
|
|
|
|
|
|
|
| 5 |
from pathlib import Path
|
| 6 |
from textwrap import dedent
|
| 7 |
+
import logging
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from huggingface_hub import HfApi, ModelCard, whoami
|
| 10 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 12 |
+
from datetime import datetime
|
| 13 |
|
| 14 |
+
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
|
|
|
| 15 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
def get_repo_namespace(repo_owner, username, user_orgs):
|
| 19 |
+
if repo_owner == 'self':
|
| 20 |
+
return username
|
| 21 |
+
for org in user_orgs:
|
| 22 |
+
if org['name'] == repo_owner:
|
| 23 |
+
return org['name']
|
| 24 |
+
raise ValueError(f"Invalid repo_owner: {repo_owner}")
|
| 25 |
|
|
|
|
| 26 |
def escape(s: str) -> str:
|
| 27 |
+
return s.replace("&", "&").replace("<", "<").replace(">", ">").replace('"', """).replace("\n", "<br/>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
| 30 |
+
if oauth_token is None or oauth_token.token is None:
|
| 31 |
+
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
| 32 |
+
if not export_to_org:
|
| 33 |
+
return gr.update(visible=False, choices=["self"], value="self"), gr.update(visible=False, value="")
|
| 34 |
+
info = whoami(oauth_token.token)
|
| 35 |
+
orgs = [org["name"] for org in info.get("orgs", [])]
|
| 36 |
+
return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(visible=True)
|
| 37 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
| 38 |
imatrix_command = [
|
| 39 |
"./llama.cpp/llama-imatrix",
|
|
|
|
| 63 |
|
| 64 |
print("Importance matrix generation completed.")
|
| 65 |
|
| 66 |
+
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False):
|
| 67 |
print(f"Model path: {model_path}")
|
| 68 |
print(f"Output dir: {outdir}")
|
| 69 |
|
| 70 |
if oauth_token is None or oauth_token.token is None:
|
| 71 |
raise ValueError("You have to be logged in.")
|
| 72 |
+
|
| 73 |
split_cmd = [
|
| 74 |
"./llama.cpp/llama-gguf-split",
|
| 75 |
"--split",
|
|
|
|
| 86 |
split_cmd.append(model_path)
|
| 87 |
split_cmd.append(model_path_prefix)
|
| 88 |
|
| 89 |
+
print(f"Split command: {split_cmd}")
|
| 90 |
+
|
| 91 |
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
|
| 92 |
+
print(f"Split command stdout: {result.stdout}")
|
| 93 |
+
print(f"Split command stderr: {result.stderr}")
|
| 94 |
+
|
| 95 |
if result.returncode != 0:
|
| 96 |
stderr_str = result.stderr.decode("utf-8")
|
| 97 |
raise Exception(f"Error splitting the model: {stderr_str}")
|
|
|
|
| 102 |
os.remove(model_path)
|
| 103 |
|
| 104 |
model_file_prefix = model_path_prefix.split('/')[-1]
|
| 105 |
+
print(f"Model file name prefix: {model_file_prefix}")
|
| 106 |
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
|
| 107 |
if sharded_model_files:
|
| 108 |
print(f"Sharded model files: {sharded_model_files}")
|
| 109 |
+
if export_to_org and org_token!="":
|
| 110 |
+
api = HfApi(token = org_token)
|
| 111 |
+
else:
|
| 112 |
+
api = HfApi(token=oauth_token.token)
|
| 113 |
for file in sharded_model_files:
|
| 114 |
file_path = os.path.join(outdir, file)
|
| 115 |
print(f"Uploading file: {file_path}")
|
|
|
|
| 123 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
| 124 |
else:
|
| 125 |
raise Exception("No sharded files found.")
|
| 126 |
+
|
| 127 |
print("Sharded model has been uploaded successfully!")
|
| 128 |
|
| 129 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo,
|
| 130 |
+
train_data_file, split_model, split_max_tensors, split_max_size,
|
| 131 |
+
export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None):
|
| 132 |
if oauth_token is None or oauth_token.token is None:
|
| 133 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
| 134 |
|
| 135 |
+
user_info = whoami(oauth_token.token)
|
| 136 |
+
username = user_info["name"]
|
| 137 |
+
user_orgs = user_info.get("orgs", [])
|
| 138 |
+
if not export_to_org:
|
| 139 |
+
repo_owner = "self"
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 143 |
+
print(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")
|
| 144 |
|
| 145 |
+
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
| 146 |
model_name = model_id.split('/')[-1]
|
| 147 |
+
api_token = org_token if (export_to_org and org_token!="") else oauth_token.token
|
| 148 |
+
api = HfApi(token=api_token)
|
| 149 |
|
| 150 |
+
dl_pattern = ["*.md", "*.json", "*.model"]
|
| 151 |
+
pattern = "*.safetensors" if any(
|
| 152 |
+
f.path.endswith(".safetensors")
|
| 153 |
+
for f in api.list_repo_tree(repo_id=model_id, recursive=True)
|
| 154 |
+
) else "*.bin"
|
| 155 |
+
dl_pattern += [pattern]
|
| 156 |
|
| 157 |
+
os.makedirs("downloads", exist_ok=True)
|
| 158 |
+
os.makedirs("outputs", exist_ok=True)
|
| 159 |
|
| 160 |
+
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
|
| 161 |
+
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
|
| 164 |
+
local_dir = Path(tmpdir)/model_name
|
| 165 |
+
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
config_dir = local_dir/"config.json"
|
| 168 |
+
adapter_config_dir = local_dir/"adapter_config.json"
|
| 169 |
+
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
| 170 |
+
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
| 171 |
+
|
| 172 |
+
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
| 173 |
+
if result.returncode != 0:
|
| 174 |
+
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
| 175 |
+
|
| 176 |
+
imatrix_path = Path(outdir)/"imatrix.dat"
|
| 177 |
+
if use_imatrix:
|
| 178 |
+
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
|
| 179 |
+
if not os.path.isfile(train_data_path):
|
| 180 |
+
raise Exception(f"Training data not found: {train_data_path}")
|
| 181 |
+
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
| 182 |
+
|
| 183 |
+
quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
|
| 184 |
+
suffix = "imat" if use_imatrix else None
|
| 185 |
+
|
| 186 |
+
gguf_files = []
|
| 187 |
+
for method in quant_methods:
|
| 188 |
+
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
| 189 |
+
path = str(Path(outdir)/name)
|
| 190 |
+
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
| 191 |
+
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
| 192 |
+
if result.returncode != 0:
|
| 193 |
+
raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}")
|
| 194 |
+
gguf_files.append((name, path))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
+
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
| 197 |
+
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
| 198 |
+
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|
| 199 |
+
|
| 200 |
+
try:
|
| 201 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
| 202 |
+
except:
|
| 203 |
+
card = ModelCard("")
|
| 204 |
+
card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
|
| 205 |
+
card.data.base_model = model_id
|
| 206 |
+
card.text = dedent(f"""
|
| 207 |
+
# {repo_id}
|
| 208 |
+
Absolutely tremendous! This repo features **GGUF quantized** versions of [{model_id}](https://huggingface.co/{model_id}) — made possible using the *very powerful* `llama.cpp`. Believe me, it's fast, it's smart, it's winning.
|
| 209 |
+
## Quantized Versions:
|
| 210 |
+
Only the best quantization. You’ll love it.
|
| 211 |
+
## Run with llama.cpp
|
| 212 |
+
Just plug it in, hit the command line, and boom — you're running world-class AI, folks:
|
| 213 |
+
```bash
|
| 214 |
+
llama-cli --hf-repo {repo_id} --hf-file {gguf_files[0][0]} -p "AI First, but also..."
|
| 215 |
+
```
|
| 216 |
+
This beautiful Hugging Face Space was brought to you by the **amazing team at [Antigma Labs](https://antigma.ai)**. Great people. Big vision. Doing things that matter — and doing them right.
|
| 217 |
+
Total winners.
|
| 218 |
+
""")
|
| 219 |
+
readme_path = Path(outdir)/"README.md"
|
| 220 |
+
card.save(readme_path)
|
| 221 |
+
for name, path in gguf_files:
|
| 222 |
if split_model:
|
| 223 |
+
split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org)
|
| 224 |
else:
|
| 225 |
+
api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id)
|
| 226 |
+
if use_imatrix and os.path.isfile(imatrix_path):
|
| 227 |
+
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id)
|
| 228 |
+
api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id)
|
| 229 |
+
|
| 230 |
+
return (f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', "llama.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
|
| 233 |
css="""/* Custom CSS to allow scrolling */
|
|
|
|
| 239 |
search_type="model",
|
| 240 |
)
|
| 241 |
|
| 242 |
+
export_to_org = gr.Checkbox(
|
| 243 |
+
label="Export to Organization Repository",
|
| 244 |
+
value=False,
|
| 245 |
+
info="If checked, you can select an organization to export to."
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
repo_owner = gr.Dropdown(
|
| 249 |
+
choices=["self"],
|
| 250 |
+
value="self",
|
| 251 |
+
label="Repository Owner",
|
| 252 |
+
visible=False
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
org_token = gr.Textbox(
|
| 256 |
+
label="Org Access Token",
|
| 257 |
+
type="password",
|
| 258 |
+
visible=False
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
q_method = gr.Dropdown(
|
| 262 |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
| 263 |
label="Quantization Method",
|
| 264 |
info="GGML quantization type",
|
| 265 |
value="Q4_K_M",
|
| 266 |
filterable=False,
|
| 267 |
+
visible=True,
|
| 268 |
+
multiselect=True
|
| 269 |
)
|
| 270 |
|
| 271 |
imatrix_q_method = gr.Dropdown(
|
| 272 |
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
| 273 |
label="Imatrix Quantization Method",
|
| 274 |
info="GGML imatrix quants type",
|
| 275 |
+
value="IQ4_NL",
|
| 276 |
filterable=False,
|
| 277 |
visible=False
|
| 278 |
)
|
|
|
|
| 315 |
)
|
| 316 |
|
| 317 |
iface = gr.Interface(
|
| 318 |
+
fn=process_model,
|
| 319 |
+
inputs=[
|
| 320 |
+
model_id,
|
| 321 |
+
q_method,
|
| 322 |
+
use_imatrix,
|
| 323 |
+
imatrix_q_method,
|
| 324 |
+
private_repo,
|
| 325 |
+
train_data_file,
|
| 326 |
+
split_model,
|
| 327 |
+
split_max_tensors,
|
| 328 |
+
split_max_size,
|
| 329 |
+
export_to_org,
|
| 330 |
+
repo_owner,
|
| 331 |
+
org_token
|
| 332 |
+
],
|
| 333 |
+
outputs=[
|
| 334 |
+
gr.Markdown(label="Output"),
|
| 335 |
+
gr.Image(show_label=False)
|
| 336 |
+
],
|
| 337 |
+
title="Make your own GGUF Quants — faster than ever before, believe me.",
|
| 338 |
+
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
| 339 |
+
api_name=False
|
| 340 |
+
)
|
| 341 |
+
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
| 342 |
+
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
| 343 |
gr.LoginButton(min_width=250)
|
| 344 |
|
|
|
|
| 345 |
|
|
|
|
|
|
|
| 346 |
|
| 347 |
+
export_to_org.change(fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token])
|
| 348 |
+
|
| 349 |
+
split_model.change(fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size])
|
| 350 |
+
use_imatrix.change(fn=lambda use: (gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use)), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file])
|
| 351 |
+
|
| 352 |
+
iface.render()
|
| 353 |
+
|
| 354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
def restart_space():
|
| 357 |
+
HfApi().restart_space(repo_id="Brianpuz/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
| 358 |
|
| 359 |
scheduler = BackgroundScheduler()
|
| 360 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
| 361 |
scheduler.start()
|
| 362 |
|
|
|
|
| 363 |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|