Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -34,19 +34,10 @@ with open('loras.json', 'r') as f:
|
|
| 34 |
# Initialize the base model with authentication and specify the device
|
| 35 |
pipe = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=dtype, token=hf_token).to(device)
|
| 36 |
|
| 37 |
-
MAX_SEED =
|
| 38 |
MAX_IMAGE_SIZE = 2048
|
| 39 |
|
| 40 |
|
| 41 |
-
device_map = infer_auto_device_map(
|
| 42 |
-
model,
|
| 43 |
-
max_memory=max_memory,
|
| 44 |
-
no_split_module_classes=["DecoderLayer", "Attention", "MLP", "LayerNorm", "Linear"],
|
| 45 |
-
dtype='float16'
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
model = dispatch_model(model, device_map='torch.cuda:0')
|
| 49 |
-
|
| 50 |
class calculateDuration:
|
| 51 |
def __init__(self, activity_name=""):
|
| 52 |
self.activity_name = activity_name
|
|
@@ -63,7 +54,7 @@ class calculateDuration:
|
|
| 63 |
else:
|
| 64 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 65 |
|
| 66 |
-
@spaces.GPU(duration=
|
| 67 |
def generate_images(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, num_images, progress):
|
| 68 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 69 |
images = []
|
|
|
|
| 34 |
# Initialize the base model with authentication and specify the device
|
| 35 |
pipe = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=dtype, token=hf_token).to(device)
|
| 36 |
|
| 37 |
+
MAX_SEED = 2**32 - 1
|
| 38 |
MAX_IMAGE_SIZE = 2048
|
| 39 |
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
class calculateDuration:
|
| 42 |
def __init__(self, activity_name=""):
|
| 43 |
self.activity_name = activity_name
|
|
|
|
| 54 |
else:
|
| 55 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 56 |
|
| 57 |
+
@spaces.GPU(duration=90)
|
| 58 |
def generate_images(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, num_images, progress):
|
| 59 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 60 |
images = []
|