Update README.md
Browse files
README.md
CHANGED
|
@@ -65,17 +65,17 @@ print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_
|
|
| 65 |
# Model Quality
|
| 66 |
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
|
| 67 |
|
| 68 |
-
|
| 69 |
```
|
| 70 |
pip install git+https://github.com/EleutherAI/lm-evaluation-harness
|
| 71 |
```
|
| 72 |
|
| 73 |
-
|
| 74 |
```
|
| 75 |
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
|
| 76 |
```
|
| 77 |
|
| 78 |
-
|
| 79 |
```
|
| 80 |
lm_eval --model hf --model_args pretrained=jerryzh168/phi4-mini-int4wo-hqq --tasks hellaswag --device cuda:0 --batch_size 8
|
| 81 |
```
|
|
@@ -98,38 +98,38 @@ lm_eval --model hf --model_args pretrained=jerryzh168/phi4-mini-int4wo-hqq --tas
|
|
| 98 |
Our int4wo is only optimized for batch size 1, so we'll only benchmark the batch size 1 performance with vllm.
|
| 99 |
For batch size N, please see our [gemlite checkpoint](https://huggingface.co/jerryzh168/phi4-mini-int4wo-gemlite).
|
| 100 |
|
| 101 |
-
|
| 102 |
```
|
| 103 |
git clone [email protected]:vllm-project/vllm.git
|
| 104 |
VLLM_USE_PRECOMPILED=1 pip install .
|
| 105 |
```
|
| 106 |
|
| 107 |
-
|
| 108 |
Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`
|
| 109 |
|
| 110 |
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
|
| 111 |
-
|
| 112 |
|
| 113 |
Run the following under `vllm` source code root folder:
|
| 114 |
|
| 115 |
-
|
| 116 |
```
|
| 117 |
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
|
| 118 |
```
|
| 119 |
|
| 120 |
-
|
| 121 |
```
|
| 122 |
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model jerryzh168/phi4-mini-int4wo-hqq --batch-size 1
|
| 123 |
```
|
| 124 |
|
| 125 |
-
|
| 126 |
|
| 127 |
We also benchmarked the throughput in a serving environment.
|
| 128 |
|
| 129 |
|
| 130 |
Run the following under `vllm` source code root folder:
|
| 131 |
|
| 132 |
-
|
| 133 |
Server:
|
| 134 |
```
|
| 135 |
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
|
|
@@ -140,7 +140,7 @@ Client:
|
|
| 140 |
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
|
| 141 |
```
|
| 142 |
|
| 143 |
-
|
| 144 |
Server:
|
| 145 |
```
|
| 146 |
vllm serve jerryzh168/phi4-mini-int4wo-hqq --tokenizer microsoft/Phi-4-mini-instruct -O3
|
|
|
|
| 65 |
# Model Quality
|
| 66 |
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
|
| 67 |
|
| 68 |
+
## Installing the nightly version to get most recent updates
|
| 69 |
```
|
| 70 |
pip install git+https://github.com/EleutherAI/lm-evaluation-harness
|
| 71 |
```
|
| 72 |
|
| 73 |
+
## baseline
|
| 74 |
```
|
| 75 |
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
|
| 76 |
```
|
| 77 |
|
| 78 |
+
## int4wo-hqq
|
| 79 |
```
|
| 80 |
lm_eval --model hf --model_args pretrained=jerryzh168/phi4-mini-int4wo-hqq --tasks hellaswag --device cuda:0 --batch_size 8
|
| 81 |
```
|
|
|
|
| 98 |
Our int4wo is only optimized for batch size 1, so we'll only benchmark the batch size 1 performance with vllm.
|
| 99 |
For batch size N, please see our [gemlite checkpoint](https://huggingface.co/jerryzh168/phi4-mini-int4wo-gemlite).
|
| 100 |
|
| 101 |
+
## Download vllm source code and install vllm
|
| 102 |
```
|
| 103 |
git clone [email protected]:vllm-project/vllm.git
|
| 104 |
VLLM_USE_PRECOMPILED=1 pip install .
|
| 105 |
```
|
| 106 |
|
| 107 |
+
## Download dataset
|
| 108 |
Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`
|
| 109 |
|
| 110 |
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
|
| 111 |
+
## benchmark_latency
|
| 112 |
|
| 113 |
Run the following under `vllm` source code root folder:
|
| 114 |
|
| 115 |
+
### baseline
|
| 116 |
```
|
| 117 |
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
|
| 118 |
```
|
| 119 |
|
| 120 |
+
### int4wo-hqq
|
| 121 |
```
|
| 122 |
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model jerryzh168/phi4-mini-int4wo-hqq --batch-size 1
|
| 123 |
```
|
| 124 |
|
| 125 |
+
## benchmark_serving
|
| 126 |
|
| 127 |
We also benchmarked the throughput in a serving environment.
|
| 128 |
|
| 129 |
|
| 130 |
Run the following under `vllm` source code root folder:
|
| 131 |
|
| 132 |
+
### baseline
|
| 133 |
Server:
|
| 134 |
```
|
| 135 |
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
|
|
|
|
| 140 |
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
|
| 141 |
```
|
| 142 |
|
| 143 |
+
### int4wo-hqq
|
| 144 |
Server:
|
| 145 |
```
|
| 146 |
vllm serve jerryzh168/phi4-mini-int4wo-hqq --tokenizer microsoft/Phi-4-mini-instruct -O3
|