File size: 17,488 Bytes
2c66284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
"""
Script to evaluate segmentation f-score and perfect discourse unit segmentation proportion from two files. Two input formats are permitted:

  * One token per line, with ten columns, no sentence breaks (default *.tok format) - segmentation indicated in column 10
  * The same, but with blank lines between sentences (*.conll format)

Token columns follow the CoNLL-U format, with token IDs in the first column and pipe separated key=value pairs in the last column. 
Document boundaries are indicated by a comment: # newdoc_id = ...
The evaluation uses micro-averaged F-Scores per corpus (not document macro average).

Example:

# newdoc_id = GUM_bio_byron
1	Education	_	_	_	_	_	_	_	Seg=B-seg
2	and	_	_	_	_	_	_	_	_
3	early	_	_	_	_	_	_	_	_
4	loves	_	_	_	_	_	_	_	_
5	Byron	_	_	_	_	_	_	_	Seg=B-seg
6	received	_	_	_	_	_	_	_	_

Or:

# newdoc_id = GUM_bio_byron
# sent_id = GUM_bio_byron-1
# text = Education and early loves
1	Education	education	NOUN	NN	Number=Sing	0	root	_	Seg=B-seg
2	and	and	CCONJ	CC	_	4	cc	_	_
3	early	early	ADJ	JJ	Degree=Pos	4	amod	_	_
4	loves	love	NOUN	NNS	Number=Plur	1	conj	_	_

# sent_id = GUM_bio_byron-2
# text = Byron received his early formal education at Aberdeen Grammar School, and in August 1799 entered the school of Dr. William Glennie, in Dulwich. [17]
1	Byron	Byron	PROPN	NNP	Number=Sing	2	nsubj	_	Seg=B-seg
2	received	receive	VERB	VBD	Mood=Ind|Tense=Past|VerbForm=Fin	0	root	_	_

For PDTB-style corpora, we calculate exact span-wise f-scores for BIO encoding, without partial credit. In other words, 
predicting an incorrect span with partial overlap is the same as missing a gold span and predicting an incorrect span
somewhere else in the corpus. Note also that spans must begin with B-Conn - predicted spans beginning with I-Conn are ignored.
The file format for PDTB style corpora is similar, but with different labels:

1	Fidelity	Fidelity	PROPN	NNP	_	6	nsubj	_	_
2	,	,	PUNCT	,	_	6	punct	_	_
3	for	for	ADP	IN	_	4	case	_	Seg=B-Conn
4	example	example	NOUN	NN	_	6	obl	_	Conn=I-conn
5	,	,	PUNCT	,	_	6	punct	_	_
6	prepared	prepare	VERB	VBN	_	0	root	_	_
7	ads	ad	NOUN	NNS	_	6	obj	_	_

Arguments:
 * goldfile: shared task gold test data
 * predfile: same format, with predicted segments positions in column 10 - note **number of tokens must match**  
 * string_input: if specified, files are replaced by strings with file contents instead of file names
 * no_boundaries: specify to eval only intra-sentence EDUs
"""

""" TODO
- OK labels : en argument, pas en dur
- OK option sans ls débuts de phrases : cf script "BIO no B'
- OK imprimer les résultats + propre : sans le "o" bizarre
- OK faire 2 classes edu et connectives (conn: futur exp for eval connective extended vs head of connective)
- solution + propre pour la colonne des labels ?
- faire une classe Eval et transformer les 2 en Eval en sous-classes
"""

__author__ = "Amir Zeldes, Janet Liu, Laura Rivière"
__license__ = "Apache 2.0"
__version__ = "2.0.0"

import io, os, sys, argparse
import json
from sklearn.metrics import accuracy_score, classification_report

# MWE and ellips : no lab or "_"
# TODO :
# print scores *100: 0.6825 => 68.25
# documentation (automatic generation ?)
# testunitaire

class Evaluation:
	"""
	Generic class for evaluation between 2 files.
	:load data, basic check, basic metrics, print results.
	"""
	def __init__(self, name: str) -> None:
		self.output = dict()
		self.name = name
		self.report = ""
		self.fill_output('doc_name', self.name)

	def get_data(self, infile: str, str_i=False) -> str:
		"""
		Stock data from file or stream.
		"""
		if str_i == False:
			data = io.open(infile, encoding="utf-8").read().strip().replace("\r", "")
		else:
			data = infile.strip()
		return data

	def fill_output(self, key: str, value) -> None:
		"""
		Fill results dict that will be printed.
		"""
		self.output[key] = value

	def check_tokens_number(self, g: list, p: list) -> None:
		"""
		Check same number of tokens/labels in both compared files.
		"""
		if len(g) != len(p):
			self.report += "\nFATAL: different number of tokens detected in gold and pred:\n"
			self.report += ">>>  In " + self.name + ": " + str(len(g)) + " gold tokens but " + str(len(p)) + " predicted tokens\n\n"
			sys.stderr.write(self.report)
			sys.exit(0)

	def check_identical_tokens(self, g: list, p: list) -> None:
		"""
		Check tokens/features are identical.
		"""
		for i, tok in enumerate(g):
			if tok != p[i]:
				self.report += "\nWARN: token strings do not match in gold and pred:\n"
				self.report += ">>> First instance in " + self.name + " token " + str(i) + "\n"
				self.report += "Gold: " + tok + " but Pred: " + p[i] + "\n\n"
				sys.stderr.write(self.report)
				break

	def compute_PRF_metrics(self, tp: int, fp: int, fn: int) -> None:
		"""
		Compute Precision, Recall, F-score from True Positive, False Positive and False Negative counts.
		Save result in dict.
		"""
		try:
			precision = tp / (float(tp) + fp)
		except Exception as e:
			precision = 0

		try:
			recall = tp / (float(tp) + fn)
		except Exception as e:
			recall = 0

		try:
			f_score = 2 * (precision * recall) / (precision + recall)
		except:
			f_score = 0

		self.fill_output("gold_count", tp + fn )
		self.fill_output("pred_count", tp + fp )
		self.fill_output("precision", precision)
		self.fill_output("recall", recall)
		self.fill_output("f_score", f_score)

	def compute_accuracy(self, g: list, p: list, k: str) -> None:
		"""
		Compute accuracy of predictions list of items, against gold list of items.
		:g: gold list
		:p: predicted list
		:k: name detail of accuracy
		"""
		self.fill_output(f"{k}_accuracy", accuracy_score(g, p) )
		self.fill_output(f"{k}_gold_count", len(g) )
		self.fill_output(f"{k}_pred_count", len(p) )

	def classif_report(self, g: list, p: list, key: str) -> None:
		"""
		Compute Precision, Recall and f-score for each instances of gold list.
		"""
		stats_dict = classification_report(g, p, labels=sorted(set(g)), zero_division=0.0, output_dict=True)
		self.fill_output(f'{key}_classification_report', stats_dict)

	def print_results(self) -> None:
		"""
		Print dict of saved results.
		"""
		# for k in self.output.keys():
		# print(f">> {k} : {self.output[k]}")

		print(json.dumps(self.output, indent=4))


class RelationsEvaluation(Evaluation):
	"""
	Specific evaluaion class for relations classification.
	The evaluation uses the simple accuracy score per corpus. 
	:rels disrpt-style data.
	:default eval last column "label"
	:option eval relation type (pdtb: implicit, explicit...) column "rel_type"
	"""

	HEADER = "doc\tunit1_toks\tunit2_toks\tunit1_txt\tunit2_txt\tu1_raw\tu2_raw\ts1_toks\ts2_toks\tunit1_sent\tunit2_sent\tdir\trel_type\torig_label\tlabel"
	# HEADER_23 = "doc\tunit1_toks\tunit2_toks\tunit1_txt\tunit2_txt\ts1_toks\ts2_toks\tunit1_sent\tunit2_sent\tdir\torig_label\tlabel"

	LABEL_ID = -1
	TYPE_ID = -3
	DISRPT_TYPES = ['Implicit', 'Explicit', 'AltLex', 'AltLexC', 'Hypophora']

	def __init__(self, name: str, gold_path: str, pred_path: str, str_i=False, rel_type=False) -> None:
		super().__init__(name)
		"""
		:param gold_file: Gold shared task file
		:param pred_file: File with predictions
		:param string_input: If True, files are replaced by strings with file contents (for import inside other scripts)
		:param rel_type: If True, scores are computed on types column, not label (relevant for PDTB)
		"""
		self.mode = "rel"
		self.g_path = gold_path
		self.p_path = pred_path
		self.opt_str_i = str_i
		self.opt_rel_t = rel_type
		self.key = "labels"

		self.fill_output("options", {"s": self.opt_str_i, "rt": self.opt_rel_t})

	def compute_scores(self) -> None:
		"""
		Get lists of data to compare, compute metrics.
		"""
		gold_units, gold_labels, gold_types = self.parse_rels_data(self.g_path, self.opt_str_i, self.opt_rel_t)
		pred_units, pred_labels, pred_types = self.parse_rels_data(self.p_path, self.opt_str_i, self.opt_rel_t)
		self.check_tokens_number(gold_labels, pred_labels)
		self.check_identical_tokens(gold_units, pred_units)

		self.compute_accuracy(gold_labels, pred_labels, self.key)
		self.classif_report(gold_labels, pred_labels, self.key)

		if self.opt_rel_t:
			self.get_types_scores(gold_labels, pred_labels, gold_types)

	def get_types_scores(self, g: list, p: list, tg: list) -> None:
		"""
		This function is to obtain scores of predictions against gold labels, by types of relations.
		"""

		for t in self.DISRPT_TYPES:
			gold_t = []
			pred_t = []
			for i, _ in enumerate(g):

				if tg[i] == t.lower():
					gold_t.append(g[i])
					pred_t.append(p[i])

			self.compute_accuracy(gold_t, pred_t, f"types_{t}")

	def parse_rels_data(self, path: str, str_i: bool, rel_t: bool) -> tuple[list[str], list[str]]:
		"""
		Rels format from DISRPT = header, then one relation classification instance per line. 
		:LREC_2024_header = 15 columns.
		"""
		data = self.get_data(path, str_i)
		header = data.split("\n")[0]
		assert header == self.HEADER, "Unrecognized .rels header."
		#column_ID = self.TYPE_ID if rel_t == True else self.LABEL_ID

		rels = data.split("\n")[1:]
		labels = [line.split("\t")[self.LABEL_ID] for line in rels] ######## .lower()
		units = [" ".join(line.split("\t")[:3]) for line in rels]
		types = [line.split("\t")[self.TYPE_ID] for line in rels] if rel_t == True else []



		return units, labels, types


class ConnectivesEvaluation(Evaluation):
	"""
	Specific evaluation class for PDTB connectives detection.
	:parse conllu-style data
	:eval upon strict connectives spans
	"""
	LAB_CONN_B = "Conn=B-conn"		# "Seg=B-Conn" 	#
	LAB_CONN_I = "Conn=I-conn"		# "Seg=I-Conn" 	#
	LAB_CONN_O = "Conn=O"			# "_"	#

	def __init__(self, name:str, gold_path:str, pred_path:str, str_i=False) -> None:
		super().__init__(name)
		"""
		:param gold_file: Gold shared task file
		:param pred_file: File with predictions
		:param string_input: If True, files are replaced by strings with file contents (for import inside other scripts)
		"""
		self.mode = "conn"
		self.seg_type = "connective spans"
		self.g_path = gold_path
		self.p_path = pred_path
		self.opt_str_i = str_i

		self.fill_output('seg_type', self.seg_type)
		self.fill_output("options", {"s": self.opt_str_i})

	def compute_scores(self) -> None:
		"""
		Get lists of data to compare, compute metrics.
		"""
		gold_tokens, gold_labels, gold_spans = self.parse_conn_data(self.g_path, self.opt_str_i)
		pred_tokens, pred_labels, pred_spans = self.parse_conn_data(self.p_path, self.opt_str_i)

		self.output['tok_count'] = len(gold_tokens)

		self.check_tokens_number(gold_tokens, pred_tokens)
		self.check_identical_tokens(gold_tokens, pred_tokens)
		tp, fp, fn = self.compare_spans(gold_spans, pred_spans)
		self.compute_PRF_metrics(tp, fp, fn)

	def compare_spans(self, gold_spans: tuple, pred_spans: tuple) -> tuple[int, int, int]:
		"""
		Compare exact spans.
		"""

		true_positive = 0
		false_positive = 0
		false_negative = 0

		for span in gold_spans: # not verified
			if span in pred_spans:
				true_positive +=1
			else:
				false_negative +=1
		for span in pred_spans:
			if span not in gold_spans:
				false_positive += 1

		return true_positive, false_positive, false_negative

	def parse_conn_data(self, path:str, str_i:bool) -> tuple[list, list, list]:
		"""
		LABEL = in last column
		"""
		data = self.get_data(path, str_i)
		tokens = []
		labels = []
		spans = []
		counter = 0
		span_start = -1
		span_end = -1
		for line in data.split("\n"):  # this loop is same than version 1
			if line.startswith("#") or line == "":
				continue
			else:
				fields = line.split("\t") # Token
				label = fields[-1]
				if "-" in fields[0] or "." in fields[0]:  # Multi-Word Expression or Ellips : No pred shall be there....
					continue
				elif self.LAB_CONN_B in label:
					if span_start > -1:  # add span
						if span_end == -1:
							span_end = span_start
						spans.append((span_start,span_end))
						span_end = -1
					label = self.LAB_CONN_B
					span_start = counter
				elif self.LAB_CONN_I in label:
					label = self.LAB_CONN_I
					span_end = counter
				else:
					label = "_"
					if span_start > -1:  # Add span
						if span_end == -1:
							span_end = span_start
						spans.append((span_start,span_end))
						span_start = -1
						span_end = -1

				tokens.append(fields[1])
				labels.append(label)
				counter += 1

		if span_start > -1 and span_end > -1:  # Add last span
			spans.append((span_start,span_end))

		if not self.LAB_CONN_B in labels:
			print(f"Unrecognized labels. Expecting: {self.LAB_CONN_B}, {self.LAB_CONN_I}, {self.LAB_CONN_O}...")
			print("maybe the model is so bad it can't find a B")

		return tokens, labels, spans


class SegmentationEvaluation(Evaluation):
	"""
	Specific evaluation class for EDUs segmentation.
	:parse conllu-style data
	:eval upon first token identification
	"""
	LAB_SEG_B = "Seg=B-seg"		# "BeginSeg=Yes"
	LAB_SEG_I = "Seg=O"			# "_"

	def __init__(self, name: str, gold_path: str, pred_path: str, str_i=False, no_b=False) -> None:
		super().__init__(name)
		"""
		:param gold_file: Gold shared task file
		:param pred_file: File with predictions
		:param string_input: If True, files are replaced by strings with file contents (for import inside other scripts)
		"""
		self.mode = "edu"
		self.seg_type = "EDUs"
		self.g_path = gold_path
		self.p_path = pred_path
		self.opt_str_i = str_i
		self.no_b = True if "conllu" in gold_path.split(os.sep)[-1] and no_b == True else False  # relevant only in conllu

		self.fill_output('seg_type', self.seg_type)
		self.fill_output("options", {"s": self.opt_str_i})

	def compute_scores(self) -> None:
		"""
		Get lists of data to compare, compute metrics.
		"""
		gold_tokens, gold_labels, gold_spans = self.parse_edu_data(self.g_path, self.opt_str_i, self.no_b)
		pred_tokens, pred_labels, pred_spans = self.parse_edu_data(self.p_path, self.opt_str_i, self.no_b)

		self.output['tok_count'] = len(gold_tokens)

		self.check_tokens_number(gold_tokens, pred_tokens)
		self.check_identical_tokens(gold_tokens, pred_tokens)
		tp, fp, fn = self.compare_labels(gold_labels, pred_labels)
		self.compute_PRF_metrics(tp, fp, fn)

	def compare_labels(self, gold_labels: list, pred_labels: list) -> tuple[int, int, int]:
		"""
		
		"""
		true_positive = 0
		false_positive = 0
		false_negative = 0

		for i, gold_label in enumerate(gold_labels): # not verified
			pred_label = pred_labels[i]
			if gold_label == pred_label:
				if gold_label == "_":
					continue
				else:
					true_positive += 1
			else:
				if pred_label == "_":
					false_negative += 1
				else:
					if gold_label == "_":
						false_positive += 1
					else:  # I-Conn/B-Conn mismatch ?
						false_positive +=1

		return true_positive, false_positive, false_negative

	def parse_edu_data(self, path: str, str_i: bool, no_b: bool) -> tuple[list, list, list]:
		"""
		LABEL = in last column
		"""
		data = self.get_data(path, str_i)
		tokens = []
		labels = []
		spans = []
		counter = 0
		span_start = -1
		span_end = -1
		for line in data.split("\n"):  # this loop is same than version 1
			if line.startswith("#") or line == "":
				continue
			else:
				fields = line.split("\t")  # Token
				label = fields[-1]
				if "-" in fields[0] or "." in fields[0]:  # Multi-Word Expression or Ellipsis : No pred shall be there....
					continue
				elif no_b == True and fields[0] == "1":
					label = "_"
				elif self.LAB_SEG_B in label:
					label = self.LAB_SEG_B
				else:
					label = "_"  # 🚩
					if span_start > -1:  # Add span
						if span_end == -1:
							span_end = span_start
						spans.append((span_start, span_end))
						span_start = -1
						span_end = -1

				tokens.append(fields[1])
				labels.append(label)
				counter += 1

		if span_start > -1 and span_end > -1:  # Add last span
			spans.append((span_start, span_end))

		if not self.LAB_SEG_B in labels:
			exit(f"Unrecognized labels. Expecting: {self.LAB_SEG_B}, {self.LAB_SEG_I}...")

		return tokens, labels, spans


if __name__ == "__main__":

	p = argparse.ArgumentParser()
	p.add_argument("-g", "--goldfile", required=True, help="Shared task gold file in .tok or .conll or .rels format.")
	p.add_argument("-p", "--predfile", required=True, help="Corresponding file with system predictions.")
	p.add_argument("-t", "--task", required=True, choices=['S', 'C', 'R'], help="Choose one of the three options: S (EDUs Segmentation), C (Connectives Detection), R (Relations Classification)")
	p.add_argument("-s", "--string_input",action="store_true",help="Whether inputs are file names or strings.")
	p.add_argument("-nb", "--no_boundary_edu", default=False, action='store_true', help="Does not count EDU that starts at beginning of sentence.")
	p.add_argument("-rt", "--rel_type", default=False, action='store_true', help="Eval relations types instead of label.")

	# help(Evaluation)
	# help(SegmentationEvaluation)
	# help(ConnectivesEvaluation)
	# help(RelationsEvaluation)

	opts = p.parse_args()

	name = opts.goldfile.split(os.sep)[-1] if os.path.isfile(opts.goldfile) else f"string_input: {opts.goldfile[0:20]}..."

	if opts.task == "R":
		my_eval = RelationsEvaluation(name, opts.goldfile, opts.predfile, opts.string_input, opts.rel_type)
	elif opts.task == "C":
		my_eval = ConnectivesEvaluation(name, opts.goldfile, opts.predfile, opts.string_input)
	elif opts.task == "S":
		my_eval = SegmentationEvaluation(name, opts.goldfile, opts.predfile, opts.string_input, opts.no_boundary_edu)

	my_eval.compute_scores()
	my_eval.print_results()