File size: 17,488 Bytes
2c66284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
"""
Script to evaluate segmentation f-score and perfect discourse unit segmentation proportion from two files. Two input formats are permitted:
* One token per line, with ten columns, no sentence breaks (default *.tok format) - segmentation indicated in column 10
* The same, but with blank lines between sentences (*.conll format)
Token columns follow the CoNLL-U format, with token IDs in the first column and pipe separated key=value pairs in the last column.
Document boundaries are indicated by a comment: # newdoc_id = ...
The evaluation uses micro-averaged F-Scores per corpus (not document macro average).
Example:
# newdoc_id = GUM_bio_byron
1 Education _ _ _ _ _ _ _ Seg=B-seg
2 and _ _ _ _ _ _ _ _
3 early _ _ _ _ _ _ _ _
4 loves _ _ _ _ _ _ _ _
5 Byron _ _ _ _ _ _ _ Seg=B-seg
6 received _ _ _ _ _ _ _ _
Or:
# newdoc_id = GUM_bio_byron
# sent_id = GUM_bio_byron-1
# text = Education and early loves
1 Education education NOUN NN Number=Sing 0 root _ Seg=B-seg
2 and and CCONJ CC _ 4 cc _ _
3 early early ADJ JJ Degree=Pos 4 amod _ _
4 loves love NOUN NNS Number=Plur 1 conj _ _
# sent_id = GUM_bio_byron-2
# text = Byron received his early formal education at Aberdeen Grammar School, and in August 1799 entered the school of Dr. William Glennie, in Dulwich. [17]
1 Byron Byron PROPN NNP Number=Sing 2 nsubj _ Seg=B-seg
2 received receive VERB VBD Mood=Ind|Tense=Past|VerbForm=Fin 0 root _ _
For PDTB-style corpora, we calculate exact span-wise f-scores for BIO encoding, without partial credit. In other words,
predicting an incorrect span with partial overlap is the same as missing a gold span and predicting an incorrect span
somewhere else in the corpus. Note also that spans must begin with B-Conn - predicted spans beginning with I-Conn are ignored.
The file format for PDTB style corpora is similar, but with different labels:
1 Fidelity Fidelity PROPN NNP _ 6 nsubj _ _
2 , , PUNCT , _ 6 punct _ _
3 for for ADP IN _ 4 case _ Seg=B-Conn
4 example example NOUN NN _ 6 obl _ Conn=I-conn
5 , , PUNCT , _ 6 punct _ _
6 prepared prepare VERB VBN _ 0 root _ _
7 ads ad NOUN NNS _ 6 obj _ _
Arguments:
* goldfile: shared task gold test data
* predfile: same format, with predicted segments positions in column 10 - note **number of tokens must match**
* string_input: if specified, files are replaced by strings with file contents instead of file names
* no_boundaries: specify to eval only intra-sentence EDUs
"""
""" TODO
- OK labels : en argument, pas en dur
- OK option sans ls débuts de phrases : cf script "BIO no B'
- OK imprimer les résultats + propre : sans le "o" bizarre
- OK faire 2 classes edu et connectives (conn: futur exp for eval connective extended vs head of connective)
- solution + propre pour la colonne des labels ?
- faire une classe Eval et transformer les 2 en Eval en sous-classes
"""
__author__ = "Amir Zeldes, Janet Liu, Laura Rivière"
__license__ = "Apache 2.0"
__version__ = "2.0.0"
import io, os, sys, argparse
import json
from sklearn.metrics import accuracy_score, classification_report
# MWE and ellips : no lab or "_"
# TODO :
# print scores *100: 0.6825 => 68.25
# documentation (automatic generation ?)
# testunitaire
class Evaluation:
"""
Generic class for evaluation between 2 files.
:load data, basic check, basic metrics, print results.
"""
def __init__(self, name: str) -> None:
self.output = dict()
self.name = name
self.report = ""
self.fill_output('doc_name', self.name)
def get_data(self, infile: str, str_i=False) -> str:
"""
Stock data from file or stream.
"""
if str_i == False:
data = io.open(infile, encoding="utf-8").read().strip().replace("\r", "")
else:
data = infile.strip()
return data
def fill_output(self, key: str, value) -> None:
"""
Fill results dict that will be printed.
"""
self.output[key] = value
def check_tokens_number(self, g: list, p: list) -> None:
"""
Check same number of tokens/labels in both compared files.
"""
if len(g) != len(p):
self.report += "\nFATAL: different number of tokens detected in gold and pred:\n"
self.report += ">>> In " + self.name + ": " + str(len(g)) + " gold tokens but " + str(len(p)) + " predicted tokens\n\n"
sys.stderr.write(self.report)
sys.exit(0)
def check_identical_tokens(self, g: list, p: list) -> None:
"""
Check tokens/features are identical.
"""
for i, tok in enumerate(g):
if tok != p[i]:
self.report += "\nWARN: token strings do not match in gold and pred:\n"
self.report += ">>> First instance in " + self.name + " token " + str(i) + "\n"
self.report += "Gold: " + tok + " but Pred: " + p[i] + "\n\n"
sys.stderr.write(self.report)
break
def compute_PRF_metrics(self, tp: int, fp: int, fn: int) -> None:
"""
Compute Precision, Recall, F-score from True Positive, False Positive and False Negative counts.
Save result in dict.
"""
try:
precision = tp / (float(tp) + fp)
except Exception as e:
precision = 0
try:
recall = tp / (float(tp) + fn)
except Exception as e:
recall = 0
try:
f_score = 2 * (precision * recall) / (precision + recall)
except:
f_score = 0
self.fill_output("gold_count", tp + fn )
self.fill_output("pred_count", tp + fp )
self.fill_output("precision", precision)
self.fill_output("recall", recall)
self.fill_output("f_score", f_score)
def compute_accuracy(self, g: list, p: list, k: str) -> None:
"""
Compute accuracy of predictions list of items, against gold list of items.
:g: gold list
:p: predicted list
:k: name detail of accuracy
"""
self.fill_output(f"{k}_accuracy", accuracy_score(g, p) )
self.fill_output(f"{k}_gold_count", len(g) )
self.fill_output(f"{k}_pred_count", len(p) )
def classif_report(self, g: list, p: list, key: str) -> None:
"""
Compute Precision, Recall and f-score for each instances of gold list.
"""
stats_dict = classification_report(g, p, labels=sorted(set(g)), zero_division=0.0, output_dict=True)
self.fill_output(f'{key}_classification_report', stats_dict)
def print_results(self) -> None:
"""
Print dict of saved results.
"""
# for k in self.output.keys():
# print(f">> {k} : {self.output[k]}")
print(json.dumps(self.output, indent=4))
class RelationsEvaluation(Evaluation):
"""
Specific evaluaion class for relations classification.
The evaluation uses the simple accuracy score per corpus.
:rels disrpt-style data.
:default eval last column "label"
:option eval relation type (pdtb: implicit, explicit...) column "rel_type"
"""
HEADER = "doc\tunit1_toks\tunit2_toks\tunit1_txt\tunit2_txt\tu1_raw\tu2_raw\ts1_toks\ts2_toks\tunit1_sent\tunit2_sent\tdir\trel_type\torig_label\tlabel"
# HEADER_23 = "doc\tunit1_toks\tunit2_toks\tunit1_txt\tunit2_txt\ts1_toks\ts2_toks\tunit1_sent\tunit2_sent\tdir\torig_label\tlabel"
LABEL_ID = -1
TYPE_ID = -3
DISRPT_TYPES = ['Implicit', 'Explicit', 'AltLex', 'AltLexC', 'Hypophora']
def __init__(self, name: str, gold_path: str, pred_path: str, str_i=False, rel_type=False) -> None:
super().__init__(name)
"""
:param gold_file: Gold shared task file
:param pred_file: File with predictions
:param string_input: If True, files are replaced by strings with file contents (for import inside other scripts)
:param rel_type: If True, scores are computed on types column, not label (relevant for PDTB)
"""
self.mode = "rel"
self.g_path = gold_path
self.p_path = pred_path
self.opt_str_i = str_i
self.opt_rel_t = rel_type
self.key = "labels"
self.fill_output("options", {"s": self.opt_str_i, "rt": self.opt_rel_t})
def compute_scores(self) -> None:
"""
Get lists of data to compare, compute metrics.
"""
gold_units, gold_labels, gold_types = self.parse_rels_data(self.g_path, self.opt_str_i, self.opt_rel_t)
pred_units, pred_labels, pred_types = self.parse_rels_data(self.p_path, self.opt_str_i, self.opt_rel_t)
self.check_tokens_number(gold_labels, pred_labels)
self.check_identical_tokens(gold_units, pred_units)
self.compute_accuracy(gold_labels, pred_labels, self.key)
self.classif_report(gold_labels, pred_labels, self.key)
if self.opt_rel_t:
self.get_types_scores(gold_labels, pred_labels, gold_types)
def get_types_scores(self, g: list, p: list, tg: list) -> None:
"""
This function is to obtain scores of predictions against gold labels, by types of relations.
"""
for t in self.DISRPT_TYPES:
gold_t = []
pred_t = []
for i, _ in enumerate(g):
if tg[i] == t.lower():
gold_t.append(g[i])
pred_t.append(p[i])
self.compute_accuracy(gold_t, pred_t, f"types_{t}")
def parse_rels_data(self, path: str, str_i: bool, rel_t: bool) -> tuple[list[str], list[str]]:
"""
Rels format from DISRPT = header, then one relation classification instance per line.
:LREC_2024_header = 15 columns.
"""
data = self.get_data(path, str_i)
header = data.split("\n")[0]
assert header == self.HEADER, "Unrecognized .rels header."
#column_ID = self.TYPE_ID if rel_t == True else self.LABEL_ID
rels = data.split("\n")[1:]
labels = [line.split("\t")[self.LABEL_ID] for line in rels] ######## .lower()
units = [" ".join(line.split("\t")[:3]) for line in rels]
types = [line.split("\t")[self.TYPE_ID] for line in rels] if rel_t == True else []
return units, labels, types
class ConnectivesEvaluation(Evaluation):
"""
Specific evaluation class for PDTB connectives detection.
:parse conllu-style data
:eval upon strict connectives spans
"""
LAB_CONN_B = "Conn=B-conn" # "Seg=B-Conn" #
LAB_CONN_I = "Conn=I-conn" # "Seg=I-Conn" #
LAB_CONN_O = "Conn=O" # "_" #
def __init__(self, name:str, gold_path:str, pred_path:str, str_i=False) -> None:
super().__init__(name)
"""
:param gold_file: Gold shared task file
:param pred_file: File with predictions
:param string_input: If True, files are replaced by strings with file contents (for import inside other scripts)
"""
self.mode = "conn"
self.seg_type = "connective spans"
self.g_path = gold_path
self.p_path = pred_path
self.opt_str_i = str_i
self.fill_output('seg_type', self.seg_type)
self.fill_output("options", {"s": self.opt_str_i})
def compute_scores(self) -> None:
"""
Get lists of data to compare, compute metrics.
"""
gold_tokens, gold_labels, gold_spans = self.parse_conn_data(self.g_path, self.opt_str_i)
pred_tokens, pred_labels, pred_spans = self.parse_conn_data(self.p_path, self.opt_str_i)
self.output['tok_count'] = len(gold_tokens)
self.check_tokens_number(gold_tokens, pred_tokens)
self.check_identical_tokens(gold_tokens, pred_tokens)
tp, fp, fn = self.compare_spans(gold_spans, pred_spans)
self.compute_PRF_metrics(tp, fp, fn)
def compare_spans(self, gold_spans: tuple, pred_spans: tuple) -> tuple[int, int, int]:
"""
Compare exact spans.
"""
true_positive = 0
false_positive = 0
false_negative = 0
for span in gold_spans: # not verified
if span in pred_spans:
true_positive +=1
else:
false_negative +=1
for span in pred_spans:
if span not in gold_spans:
false_positive += 1
return true_positive, false_positive, false_negative
def parse_conn_data(self, path:str, str_i:bool) -> tuple[list, list, list]:
"""
LABEL = in last column
"""
data = self.get_data(path, str_i)
tokens = []
labels = []
spans = []
counter = 0
span_start = -1
span_end = -1
for line in data.split("\n"): # this loop is same than version 1
if line.startswith("#") or line == "":
continue
else:
fields = line.split("\t") # Token
label = fields[-1]
if "-" in fields[0] or "." in fields[0]: # Multi-Word Expression or Ellips : No pred shall be there....
continue
elif self.LAB_CONN_B in label:
if span_start > -1: # add span
if span_end == -1:
span_end = span_start
spans.append((span_start,span_end))
span_end = -1
label = self.LAB_CONN_B
span_start = counter
elif self.LAB_CONN_I in label:
label = self.LAB_CONN_I
span_end = counter
else:
label = "_"
if span_start > -1: # Add span
if span_end == -1:
span_end = span_start
spans.append((span_start,span_end))
span_start = -1
span_end = -1
tokens.append(fields[1])
labels.append(label)
counter += 1
if span_start > -1 and span_end > -1: # Add last span
spans.append((span_start,span_end))
if not self.LAB_CONN_B in labels:
print(f"Unrecognized labels. Expecting: {self.LAB_CONN_B}, {self.LAB_CONN_I}, {self.LAB_CONN_O}...")
print("maybe the model is so bad it can't find a B")
return tokens, labels, spans
class SegmentationEvaluation(Evaluation):
"""
Specific evaluation class for EDUs segmentation.
:parse conllu-style data
:eval upon first token identification
"""
LAB_SEG_B = "Seg=B-seg" # "BeginSeg=Yes"
LAB_SEG_I = "Seg=O" # "_"
def __init__(self, name: str, gold_path: str, pred_path: str, str_i=False, no_b=False) -> None:
super().__init__(name)
"""
:param gold_file: Gold shared task file
:param pred_file: File with predictions
:param string_input: If True, files are replaced by strings with file contents (for import inside other scripts)
"""
self.mode = "edu"
self.seg_type = "EDUs"
self.g_path = gold_path
self.p_path = pred_path
self.opt_str_i = str_i
self.no_b = True if "conllu" in gold_path.split(os.sep)[-1] and no_b == True else False # relevant only in conllu
self.fill_output('seg_type', self.seg_type)
self.fill_output("options", {"s": self.opt_str_i})
def compute_scores(self) -> None:
"""
Get lists of data to compare, compute metrics.
"""
gold_tokens, gold_labels, gold_spans = self.parse_edu_data(self.g_path, self.opt_str_i, self.no_b)
pred_tokens, pred_labels, pred_spans = self.parse_edu_data(self.p_path, self.opt_str_i, self.no_b)
self.output['tok_count'] = len(gold_tokens)
self.check_tokens_number(gold_tokens, pred_tokens)
self.check_identical_tokens(gold_tokens, pred_tokens)
tp, fp, fn = self.compare_labels(gold_labels, pred_labels)
self.compute_PRF_metrics(tp, fp, fn)
def compare_labels(self, gold_labels: list, pred_labels: list) -> tuple[int, int, int]:
"""
"""
true_positive = 0
false_positive = 0
false_negative = 0
for i, gold_label in enumerate(gold_labels): # not verified
pred_label = pred_labels[i]
if gold_label == pred_label:
if gold_label == "_":
continue
else:
true_positive += 1
else:
if pred_label == "_":
false_negative += 1
else:
if gold_label == "_":
false_positive += 1
else: # I-Conn/B-Conn mismatch ?
false_positive +=1
return true_positive, false_positive, false_negative
def parse_edu_data(self, path: str, str_i: bool, no_b: bool) -> tuple[list, list, list]:
"""
LABEL = in last column
"""
data = self.get_data(path, str_i)
tokens = []
labels = []
spans = []
counter = 0
span_start = -1
span_end = -1
for line in data.split("\n"): # this loop is same than version 1
if line.startswith("#") or line == "":
continue
else:
fields = line.split("\t") # Token
label = fields[-1]
if "-" in fields[0] or "." in fields[0]: # Multi-Word Expression or Ellipsis : No pred shall be there....
continue
elif no_b == True and fields[0] == "1":
label = "_"
elif self.LAB_SEG_B in label:
label = self.LAB_SEG_B
else:
label = "_" # 🚩
if span_start > -1: # Add span
if span_end == -1:
span_end = span_start
spans.append((span_start, span_end))
span_start = -1
span_end = -1
tokens.append(fields[1])
labels.append(label)
counter += 1
if span_start > -1 and span_end > -1: # Add last span
spans.append((span_start, span_end))
if not self.LAB_SEG_B in labels:
exit(f"Unrecognized labels. Expecting: {self.LAB_SEG_B}, {self.LAB_SEG_I}...")
return tokens, labels, spans
if __name__ == "__main__":
p = argparse.ArgumentParser()
p.add_argument("-g", "--goldfile", required=True, help="Shared task gold file in .tok or .conll or .rels format.")
p.add_argument("-p", "--predfile", required=True, help="Corresponding file with system predictions.")
p.add_argument("-t", "--task", required=True, choices=['S', 'C', 'R'], help="Choose one of the three options: S (EDUs Segmentation), C (Connectives Detection), R (Relations Classification)")
p.add_argument("-s", "--string_input",action="store_true",help="Whether inputs are file names or strings.")
p.add_argument("-nb", "--no_boundary_edu", default=False, action='store_true', help="Does not count EDU that starts at beginning of sentence.")
p.add_argument("-rt", "--rel_type", default=False, action='store_true', help="Eval relations types instead of label.")
# help(Evaluation)
# help(SegmentationEvaluation)
# help(ConnectivesEvaluation)
# help(RelationsEvaluation)
opts = p.parse_args()
name = opts.goldfile.split(os.sep)[-1] if os.path.isfile(opts.goldfile) else f"string_input: {opts.goldfile[0:20]}..."
if opts.task == "R":
my_eval = RelationsEvaluation(name, opts.goldfile, opts.predfile, opts.string_input, opts.rel_type)
elif opts.task == "C":
my_eval = ConnectivesEvaluation(name, opts.goldfile, opts.predfile, opts.string_input)
elif opts.task == "S":
my_eval = SegmentationEvaluation(name, opts.goldfile, opts.predfile, opts.string_input, opts.no_boundary_edu)
my_eval.compute_scores()
my_eval.print_results()
|